On the electrostatic field in expansion dynamics of~gas~bubbles
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 4, pp. 756-763.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to the study of the dynamics of the formation of bubbles in a gas–liquid system taking into account the potential difference. The electrical conductivity of the fluid is determined depending on the concentration of the electrolyte and, accordingly, the electrostatic field that occurs when the fluid flows. The effect of the electrostatic field on the bubble formation dynamics has shown that the radius of the gas bubbles and the dynamics of its expansion, formed by the pressure difference, can be regulated by the potential difference parameter. Depending on the electrolytic concentration, the electric conductivity of the liquid and, accordingly, the electrostatic field arising from friction in fluid are determined. The effect of the electrostatic field on the dynamics of the bubble formation has shown that the radius of gas bubbles and expansion dynamics formed by the pressure drop can be regulated by the potential difference parameter. It is presented that one of the main factors affecting the flow of two-phase fluids is the nature of the liquid phase and the concentration of electrolyte added. The results of regulation of the bubble formation dynamics in the gas–liquid system via the electrostatic field and a number of physical parameters can be applied in the oil and gas industry, chemical processes, biomechanics.
Keywords: gas bubble, electrostatic field, pressure drop, potential difference, expansion dynamics.
@article{VSGTU_2019_23_4_a8,
     author = {P. T. Museibli},
     title = {On the electrostatic field in expansion dynamics of~gas~bubbles},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {756--763},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2019_23_4_a8/}
}
TY  - JOUR
AU  - P. T. Museibli
TI  - On the electrostatic field in expansion dynamics of~gas~bubbles
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2019
SP  - 756
EP  - 763
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2019_23_4_a8/
LA  - en
ID  - VSGTU_2019_23_4_a8
ER  - 
%0 Journal Article
%A P. T. Museibli
%T On the electrostatic field in expansion dynamics of~gas~bubbles
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2019
%P 756-763
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2019_23_4_a8/
%G en
%F VSGTU_2019_23_4_a8
P. T. Museibli. On the electrostatic field in expansion dynamics of~gas~bubbles. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 4, pp. 756-763. http://geodesic.mathdoc.fr/item/VSGTU_2019_23_4_a8/

[1] Femat R., Alvarez-Ramírez J., Soria A., “Chaotic flow structure in a vertical bubble column”, Phys. Lett. A, 248:1 (2018), 67–79 | DOI

[2] Kikuchi R., Yano T., Tsutsumi A. et al., “Diagnosis of chaotic dynamics of bubble motion in a bubble column”, Chem. Eng. Sci., 52:21–22 (1997), 3741–3745 | DOI

[3] Luewisutthichat W., Tsutsumi A., Yoshida K., “Chaotic hydrodynamics of continuous single-bubble flow systems”, Chem. Eng. Sci., 52:21–22 (1997), 3685–3691 | DOI

[4] Lord Rayleigh O.M. F.R.S., “On the pressure developed in a liquid during the collapse of a spherical cavity”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 34:200 (1917), 94–98 | DOI | Zbl

[5] Tsuge H., “Hydrodynamics of bubble formation from submerged orifices”, Encyclopedia of Fluid Mechanics, v. 3, Gulf Publ., Houston, TX, 1986, 191–232

[6] Deshpande D. A., Deo M. D., Hanson F. V., Oblad A. G., “A model for the prediction of bubble size at a single orifice in two-phase gas—liquid systems”, Chem. Eng. Sci., 47:7 (1991), 1669–1676 | DOI

[7] Longuet-Higgins M. S., Kerman B. R., Lunde K., “The release of air bubbles from an underwater nozzle”, J. Fluid Mech., 230 (1991), 365–390 | DOI | Zbl

[8] Drahoš J., Bradka F., Punčochář M., “Fractal behaviour of pressure fluctuations in a bubble column”, Chem. Eng. Sci., 47:15–16 (1992), 4069–4075 | DOI

[9] Terasaka K., Tsuge H., “Bubble formation under constant-flow conditions”, Chem. Eng. Sci., 48:19 (1993), 3417–3422 | DOI

[10] Tsouris C., Shin W.-T., Yiacoumi S., “Pumping, spraying, and mixing of fluids by electric fields”, Canad. J. Chem. Eng., 76:3 (1998), 589–599 | DOI

[11] Sarnobat S. U., Rajput S., Bruns D. D. et al., “The impact of external electrostatic fields on gas–liquid bubbling dynamics”, Chem. Eng. Sci., 2004, no. 59, 247–258 | DOI

[12] Danti M., Di Marco P., Grassi W., Memoli G., “Effect of an external electric field on bubble dynamics: Preliminary study”, Proc. XVIII UIT National Conference (Cernobbio, 28–30 June 2000), 2000, 715–728 http://www2.ing.unipi.it/~a006600/papers/uit00bolle-f.pdf

[13] Loubière K., Hébrard G., “Influence of liquid surface tension (surfactants) on bubble formation at rigid and flexible orifices”, Chem. Eng. Process., 43:11 (2004), 1361–1369 | DOI

[14] Tauzin C., Contribution à l'étude et à la recherche d'applications spécifiques de la technique de fractionnement par bulles, Thesis dissertation no. 23, INSA Toulouse France, 1979 (In French)

[15] Loubière K., Croissance et détachement de bulles générées par des orifices rigides et flexibles dans des phases liquides newtoniennes: étude expérimentale et modélisation, Thesis dissertation no. 663, INSA Toulouse France, 1979 (In French)

[16] Webb I. R., Arora M., Roy R.A. et al., “Dynamics of gas bubbles in time-variant temperature fields”, J. Fluid Mech., 663 (2010), 209–232 | DOI | Zbl

[17] Panahov G. M., Museibli P. T., “The study of internal exposure on the fluid hydrodynamics”, Transactions of NAS of Azerbaijan, Issue Mechanics, 37:7 (2017), 66–71