Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2019_23_4_a4, author = {A. V. Khokhlov}, title = {Analysis of the bulk creep influence on stress-strain curves under tensile loadings at constant rates and on {Poisson's} ratio evolution based on the linear viscoelasticity theory}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {671--704}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2019_23_4_a4/} }
TY - JOUR AU - A. V. Khokhlov TI - Analysis of the bulk creep influence on stress-strain curves under tensile loadings at constant rates and on Poisson's ratio evolution based on the linear viscoelasticity theory JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2019 SP - 671 EP - 704 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2019_23_4_a4/ LA - ru ID - VSGTU_2019_23_4_a4 ER -
%0 Journal Article %A A. V. Khokhlov %T Analysis of the bulk creep influence on stress-strain curves under tensile loadings at constant rates and on Poisson's ratio evolution based on the linear viscoelasticity theory %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2019 %P 671-704 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2019_23_4_a4/ %G ru %F VSGTU_2019_23_4_a4
A. V. Khokhlov. Analysis of the bulk creep influence on stress-strain curves under tensile loadings at constant rates and on Poisson's ratio evolution based on the linear viscoelasticity theory. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 4, pp. 671-704. http://geodesic.mathdoc.fr/item/VSGTU_2019_23_4_a4/
[1] Il'yushin A. A., Pobedrya B. E., Osnovy matematicheskoi teorii termoviazkouprugostii [Fundamentals of the Mathematical Theory of Thermoviscoelasticity], Nauka, Moscow, 1970, 280 pp. (In Russian) | MR
[2] Moskvitin V. V., Soprotivlenie viazkouprugikh materialov [Strength of Viscoelastic Materials], Nauka, Moscow, 1972, 328 pp. (In Russian)
[3] Cristensen R. M., Theory of viscoelasticity. An introduction, Academic Press, New York, 1971, xii+364 pp. | DOI
[4] Rabotnov Yu. N., Elements of Hereditary Solid Mechanics, Mir Publ., Moscow, 1980, 388 pp. | MR | Zbl
[5] Ainbinder S. B., Tiunina E. L., Tsirule K. I., Svoistva polimerov v razlichnykh napriazhennykh sostoianiiakh [Properties of Polymers in Different Stress State], Khimiya, Moscow, 1981, 232 pp. (In Russian)
[6] Gol'dman A. Ya., Ob"emnaia deformatsiia plastmass [Volumetric Deformation of Plastics], Mashinostroenie, Leningrad, 1984, 232 pp. (In Russian)
[7] Gol'dman A. Ya., Prediction of the deformation properties of polymeric and composite materials, American Chemical Society, Washington, DC, 1994, xiii+349 pp.
[8] Tschoegl N. W., The Phenomenological Theory of Linear Viscoelastic Behavior, Springer-Verlag, Berlin, 1989, xxv+769 pp. | DOI | MR | Zbl
[9] Lakes R. S., Viscoelastic Materials, Cambridge Univ. Press, Cambridge, 2009, xvi+461 pp. | DOI
[10] Christensen R. M., Mechanics of Composite Materials, Dover Publ., New York, 2012, 384 pp.
[11] Bergström J. S., Mechanics of Solid Polymers. Theory and Computational Modeling, William Andrew, San Diego, 2015, xiv+509 pp. | DOI
[12] Brekhova V. D., “Investigation of the Poisson's ratio of certain crystalline polymers under a constant compressive load”, Polymer Mechanics, 1965, no. 4, 23–24 | DOI
[13] Dzene I. Ya., Putans A. V., “Poisson's ratio of polyethylene in one-dimensional creep”, Polymer Mechanics, 1967, no. 5, 626–627 | DOI
[14] Dzene I. Ya., Kregers A. F., Vilks U. K., “Characteristic features of the deformation process on creep and secondary creep of polymers under conditions of uni-axial tension. Part I”, Polymer Mechanics, 10:3 (1974), 337–342 | DOI
[15] Shcherbak V. V., Gol'dman A. Ya., “Volume changes in dispersely filled composites under creep tests”, Mekh. Kompozit. Mater., 1982, no. 3, 549–552 (In Russian)
[16] Kalinnikov A. E., Vakhrushev A. V., “On a ratio between lateral and longitudinal strains in heteroresistant materials under uniaxial creep conditions”, Mekh. Kompozit. Mater., 1985, no. 2, 351–354 (In Russian)
[17] Naqui S. I., Robinson I. M., “Tensile dilatometric studies of deformation in polymeric materials and their composites”, J. Mater. Sci., 28:6 (1993), 1421–1429 | DOI
[18] Özüpek S., Becker E. B., “Constitutive equations for solid propellants”, J. Eng. Mater. Technol., 119:2 (1997), 125–132 | DOI
[19] Tschoegl N. W., “Time dependence in material properties: An overview”, Mech. Time-Depend. Mater., 1:1 (1997), 3–31 | DOI
[20] Okoli O. I, Smith G. F., “The effect of strain rate and fibre content on the Poisson's ratio of glass/epoxy composites”, Composite Structures, 48:1–3 (2000), 157–161 | DOI
[21] Hilton H. H., “Implications and constraints of time-independent Poisson's ratios in linear isotropic and anisotropic viscoelasticity”, J. Elasticity, 63:3 (2001), 221–251 | DOI | MR | Zbl
[22] Tschoegl N. W., Knauss W. G., Emri I., “Poisson's ratio in linear viscoelasticity – A critical review”, Mech. Time-Depend. Mater., 6:1 (2002), 3–51 | DOI
[23] Arzoumanidis G. A., Liechti K. M., “Linear viscoelastic property measurement and its significance for some nonlinear viscoelasticity models”, Mech. Time-Depend. Mater., 7:3 (2003), 209–250 | DOI
[24] Krempl E., Khan F., “Rate (time)-dependent deformation behavior: an overview of some properties of metals and solid polymers”, Int. J. Plasticity, 19:7 (2003), 1069–1095 | DOI | Zbl
[25] Cangemi L., Elkoun S., G'Sell C., Meimon Y., “Volume strain changes of plasticized Poly(vinylidene fluoride) during tensile and creep tests”, J. Appl. Polym. Sci., 91:3 (2004), 1784–1791 | DOI
[26] Lomakin E. V., “Mechanics of media with stress-state dependent properties”, Phys. Mesomech., 10:5–6 (2007), 255–264 | DOI
[27] Pandini S, Pegoretti A., “Time, temperature, and strain effects on viscoelastic Poisson's ratio of epoxy resins”, Polym. Eng. Sci., 48:7 (2008), 1434–1441 | DOI
[28] O'Brien D. J., Sottos N. R., White S. R., “Cure-dependent viscoelastic Poisson's ratio of epoxy”, Exp. Mech., 47:2 (2007), 237–249 | DOI
[29] Bykov D. L., Peleshko V. A., “Constitutive relations for strain and failure of filled polymer materials in dominant axial tension processes under various barothermal conditions”, Mech. Solids, 43:6 (2008), 870–891 | DOI
[30] Grassia L., D'Amore A., Simon S. L., “On the viscoelastic Poisson's ratio in amorphous polymers”, J. Rheology, 54:5 (2010), 1009–1022 | DOI
[31] Shekhar H., Sahasrabudhe A. D., “Longitudinal strain dependent variation of Poisson's ratio for HTPB based solid rocket propellants in uni-axial tensile testing”, Propellants Explosives Pyrotechnics, 36:6 (2011), 558–563 | DOI
[32] Tscharnuter D., Jerabek M., Major Z., Lang R. W., “Time-dependent Poisson's ratio of polypropylene compounds for various strain histories”, Mech. Time-Depend. Mater., 15:1 (2011), 15–28 | DOI
[33] Emad K., Grasley Z. C., Masad E., “Viscoelastic Poisson's ratio of asphalt mixtures”, Int. J. Geomechanics, 13:2 (2011), 162–169 | DOI
[34] Guo J. X., Luigi G., Simon S. L., “Bulk and shear rheology of a symmetric three-arm star polystyrene”, J. Polymer Science. Part B: Polymer Physics, 50:17 (2012), 1233–1244 | DOI
[35] Kästner M., Obst M., Brummund J., Thielsch K., Ulbricht V., “Inelastic material behavior of polymers — Experimental characterization, formulation and implementation of a material model”, Mech. Mater., 52 (2012), 40–57 | DOI
[36] Kozhevnikova M. E., “Plastic zone boundary and Poisson's ratio depending on plastic loosening”, Phys. Mesomech., 16:2 (2013), 162–169 | DOI | MR
[37] Cui H. R., Tang G. J., Shen Z. B., “Study on viscoelastic Poisson's ratio of solid propellants using digital image correlation method”, Propellants Explosives Pyrotechnics, 41:5 (2016), 835–843 | DOI
[38] Aurangzeb Q., Ozer H., Al-Qadi I. L., Hilton H. H., “Viscoelastic and Poisson's ratio characterization of asphalt materials: Critical review and numerical simulations”, Mater. Struct., 50:1 (2017), 49 | DOI
[39] Lakes R., “Foam structure with a negative Poisson's ratio”, Science, 235:4792 (1987), 1038–1040 | DOI
[40] Friis E. A., Lakes R. S., Park J. B., “Negative Poisson's ratio polymeric and metallic materials”, J. Mater. Sci., 23:12 (1988), 4406–4414 | DOI
[41] Caddock B. D., Evans K. E., “Microporous materials with negative Poisson's ratios. I: Microstructure and mechanical properties”, J. Physics D: Applied Physics, 22:12 (1989), 1877–1882 | DOI
[42] Berlin Al. Al., Rotenburg L., Basert R., “Specific features of deformation of non-ordered polymeric and non-polymeric solids”, Vysokomolek. Soed. A, 34:7 (1992), 6–32 (In Russian)
[43] Milton G. W., “Composite materials with Poisson's ratios close to $-1$”, J. Mech. Phys. Solids, 40:5 (1992), 1105–1137 | DOI | MR | Zbl
[44] Alderson K. L., Evans K. E., “The fabrication of microporous polyethylene having negative Poisson's ratio”, Polymer, 33:20 (1992), 4435–4438 | DOI
[45] Lakes R. S., Elms K., “Indentability of conventional and negative Poisson's ratio foams”, J. Compos. Mater., 27:12 (1993), 1193–1202 | DOI
[46] Chan N., Evans K. E., “Indentation resilience of conventional and auxetic foams”, J. Cell. Plastics, 34:3 (1998), 231–260 | DOI
[47] Chan N., Evans K. E., “The mechanical properties of conventional and auxetic foams. Part 1: Compression and tension”, J. Cell. Plastics, 35:2 (1999), 130–165 | DOI
[48] Alderson K. L., Fitzgerald A., Evans K. E., “The strain dependent indentation resilience of auxetic microporous polyethylene”, J. Mater. Sci., 35:16 (2000), 4039–4047 | DOI
[49] Konek D. A., Voitsekhovski K. V., Pleskachevsky Yu. M., Shil'ko S. V., “Materials with negative Poisson's ratio. A review”, Mekh. Kompoz. Mater. Konstr., 10:1 (2004), 35–69 (In Russian)
[50] Liu Y., Hu H., “A review on auxetic structures and polymeric materials”, Sci. Res. Essays, 5:10 (2010), 1052–1063 http://hdl.handle.net/10397/27029
[51] Greaves G. N., Greer A. L., Lakes R. S., Rouxel T., “Poisson's ratio and modern materials”, Nature Materials, 10:11 (2011), 823–837 | DOI
[52] Huang C., Chen L., “Negative Poisson's ratio in modern functional materials”, Advanced Materials, 28:37 (2016), 8079–8096 | DOI
[53] Volokh K. Yu., “On arterial fiber dispersion and auxetic effect”, J. Biomech., 61 (2017), 123–130 | DOI
[54] van der Varst P. G. Th., Kortsmit W. G., “Notes on the lateral contraction of linear isotropic viscoelastic materials”, Arch. Appl. Mech., 62:5 (1992), 338–346 | DOI | Zbl
[55] Hilton H. H., Sung Y., “The significance of (an)isotropic viscoelastic Poisson ratio stress and time dependencies”, Int. J. Solids Structures, 35:23 (1998), 3081–3095 | DOI | Zbl
[56] Lakes R. S., Wineman A. S., “On Poisson's ratio in linearly viscoelastic solids”, J. Elasticity, 85:1 (2006), 45–63 | DOI | MR | Zbl
[57] Abudushalamu A., Vandamme M., Torrenti J. M., Benoit M., “Theoretical and practical differences between creep and relaxation Poisson's ratios in linear Viscoelasticity”, Mech. Time-Depend. Mater., 19:4 (2015), 537–555 | DOI
[58] Hilton H. H., “Elastic and viscoelastic Poisson's ratios: The theoretical mechanics perspective”, Mater. Sci. Appl., 8:4 (2017), 291–332 | DOI
[59] Ainbinder S. B., Alksne K. I., Tiunina E. L., Laka M. G., Svoistva polimerov pri vysokikh davleniiakh [Properties of Polymers under High Pressure], Khimiya, Moscow, 1973, 192 pp. (In Russian)
[60] Gol'dshtein R. V., Gorodtsov V. A., Lisovenko D. S., “Variability of Poisson's ratio for hexagonal crystals under pressure”, Trudy MAI, 87 (2016), 1–22 (In Russian)
[61] Vekilov Yu. Kh., Krasilnikov O. M., Lugovskoy A. V., “Elastic properties of solids at high pressure”, Phys. Usp., 58:11 (2015), 1106–1114 | DOI | DOI
[62] Khokhlov A. V., “Simulation of hydrostatic pressure influence on creep curves and Poisson's ratio of rheonomic materials under tension using the Rabotnov non-linear hereditary relation”, Mekh. Kompoz. Mater. Konstr., 24:3 (2018), 407–436 (In Russian) | DOI
[63] Khokhlov A. V., “Specific features of stress-strain curves at constant stress rate or strain rate yielding from linear viscoelasticity”, Problems of Strength and Plasticity, 77:2 (2015), 139–154 (In Russian) | DOI
[64] Khokhlov A. V., “Analysis of properties of creep curves generated by the linear viscoelasticity theory under arbitrary loading programs at initial stage”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:1 (2018), 65–95 (In Russian) | DOI | Zbl
[65] Khokhlov A. V., “Analysis of creep curves produced by the linear viscoelasticity theory under cyclic stepwise loadings”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:2 (2017), 326–361 (In Russian) | DOI | Zbl
[66] Khokhlov A. V., “Two-sided estimates for the relaxation function of the linear theory of heredity via the relaxation curves during the ramp-deformation and the methodology of identification”, Mech. Solids, 53:3 (2018), 307–328 | DOI | DOI
[67] Khokhlov A. V., “Analysis of the linear viscoelasticity theory capabilities to simulate hydrostatic pressure influence on creep curves and lateral contraction ratio of rheonomous materials”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:2 (2019), 304–340 (In Russian) | DOI | MR
[68] Khokhlov A. V., “Asymptotic behavior of creep curves in the Rabotnov nonlinear heredity theory under piecewise constant loadings and memory decay conditions”, Moscow Univ. Mech. Bull., 72:5 (2017), 103–107 | DOI | Zbl
[69] Khokhlov A. V., “Analysis of properties of ramp stress relaxation curves produced by the Rabotnov non-linear hereditary theory”, Mech. Compos. Mater., 54:4 (2018), 473–486 | DOI
[70] Khokhlov A. V., “Applicability indicators of the linear viscoelasticity theory using creep curves under tensile load combined with constant hydrostatic pressure”, Mekh. Kompoz. Mater. Konstr., 25:2 (2019), 259–280 | DOI
[71] Khokhlov A. V., “Properties of stress-strain curves family generated by the Rabotnov non-linear relation for viscoelastic materials”, Mech. Solids, 2019, no. 2, 29–47 (In Russian) | DOI
[72] Rabotnov Yu. N., “Equilibrium of an elastic medium with after-effect”, Fractional Calculus and Applied Analysis, 17:3 (2014), 684–696 | DOI | MR | MR | Zbl | Zbl
[73] Rabotnov Yu. N., Creep problems in structural members, North-Holland Publ. Co., Amsterdam, London, 1969, xiv+822 pp. | Zbl