Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2019_23_4_a2, author = {E. V. Murashkin and Yu. N. Radayev}, title = {On a differential constraint in the continuum theory of~growing solids}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {646--656}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2019_23_4_a2/} }
TY - JOUR AU - E. V. Murashkin AU - Yu. N. Radayev TI - On a differential constraint in the continuum theory of~growing solids JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2019 SP - 646 EP - 656 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2019_23_4_a2/ LA - en ID - VSGTU_2019_23_4_a2 ER -
%0 Journal Article %A E. V. Murashkin %A Yu. N. Radayev %T On a differential constraint in the continuum theory of~growing solids %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2019 %P 646-656 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2019_23_4_a2/ %G en %F VSGTU_2019_23_4_a2
E. V. Murashkin; Yu. N. Radayev. On a differential constraint in the continuum theory of~growing solids. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 4, pp. 646-656. http://geodesic.mathdoc.fr/item/VSGTU_2019_23_4_a2/
[1] Berman B., “3-D printing: The new industrial revolution”, Business Horizons, 55:2 (2012), 155–162 | DOI
[2] Mankovich N. J., Cheeseman A. M., Stoker N. G., “The display of three-dimensional anatomy with stereolithographic models”, J. Digit. Imaging, 3:3 (1990), 200–203 | DOI
[3] Stampfl J., Baudis S., Heller C., et al., “Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography”, J. Micromech. Microeng., 18:12 (2008), 125014 | DOI
[4] Murr L. E., Gaytan S. M., Ceylan A., et al., “Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting”, Acta Materialia, 58:5 (2010), 1887–1894 | DOI
[5] Bauer W., Knitter R., Emde A., et al., “Replication techniques for ceramic microcomponents with high aspect ratios”, Microsystem Technologies, 9:1–2 (2002), 81–86 | DOI
[6] Rengier F., Mehndiratta A., von Tengg-Kobligk H., et al., “3D printing based on imaging data: review of medical applications”, Int. J. Comput. Assist. Radiol. Surg., 5:4 (2010), 335–341 | DOI
[7] Lipson H., Kurman M., Fabricated: The new world of 3D printing, John Wiley Sons, Indiana, 2013
[8] Ventola C. L., “Medical applications for 3D printing: current and projected uses”, Pharmacy and Therapeutics, 39:10 (2014), 704–711
[9] Ozel T., Bourret G. R., Mirkin C. A., “Coaxial lithography”, Nature Nanotechnology, 10:4 (2015), 319–324 | DOI
[10] Panda B., Paul S. C., Hui L. J., et al., “Additive manufacturing of geopolymer for sustainable built environment”, Journal of Cleaner Production, 167 (2017), 281–288 | DOI
[11] Stadnik N. E., Dats E. P., “Continuum mathematical modelling of pathological growth of blood vessels”, Journal of Physics: Conference Series, 991 (2018), 012075 | DOI
[12] Stadnik N. E., Murashkin E. V., Dats E. P., “Residual stresses in blood vessel wall during atherosclerosis”, AIP Conference Proceedings, 2116:1 (2019), 380013 | DOI
[13] Southwell R. V., An introduction to the theory of elasticity. For engineers and physicists, Oxford Engineering Science Series, Oxford Univ. Press, London, 1936 | MR | Zbl
[14] Rashba E. I., “Stresses computation in massive construction under their own weight taking into account the construction sequence”, Proc. Inst. Struct. Mech. Acad. Sci. Ukrainian SSR, 1953, no. 18, 23–27 (In Russian)
[15] Charlab V. D., “Linear creep theory of the build-up body. Mechanics of rod systems and solid mediums”, The Proceedings of the Leningrad Construction Institute, v. 49, Leningrad Construction Institute, Leningrad, 1966, 93–119 (In Russian)
[16] Arutyunyan N. Kh., Naumov V. E., Radayev Yu. N., “Dynamic expansion of an elastic layer. Part 1. Motion of a flow of precipitated particles at a variable rate”, Izv. Akad. Nauk. Mekh. Tverd. Tela, 1992, no. 5, 6–24 (In Russian)
[17] Arutyunyan N. Kh., Naumov V. E., Radayev Yu. N., “Dynamical expansion of an elastic layer. Part 2. The case of drop of accreted particles at a constant rate”, Izv. Akad. Nauk. Mekh. Tverd. Tela, 1992, no. 6, 99–112 (In Russian)
[18] Naumov V. E., Radayev Yu. N., Thermomechanical model of an growing solids: Variational formulation, Preprint no. 527, IPMech RAS, Moscow, 1993, 39 pp. (In Russian)
[19] Dmitrieva A. M., Naumov V. E., Radayev Yu. N., Growth of thermoelastic spherical layer: Application of the variational approach, Preprint no. 528, IPMech RAS, Moscow, 1993, 64 pp. (In Russian)
[20] Arutyunyan N. Kh., Naumov V. E., “The boundary value problem of the theory of viscoelastic plasticity of a growing body subject to aging”, J. Appl. Math. Mech., 48:1 (1984), 1–10 | DOI | MR
[21] Trincher V. K., “On the formulation of the problem of stresses calculation in the gravitational state of a growing solid”, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 1984, no. 2, 119–124 (In Russian)
[22] Bykovtsev G. I., Izbrannye problemnye voprosy mekhaniki deformiruemykh sred [Selected Problems from Solid Mechanics. Collection of articles], Dal'nauka, Vladivostok, 2002 (In Russian)
[23] Kovalev V. A., Radayev Yu. N., “Mathematical models and contemporary theories of physical fields”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 9:4(2) (2009), 41–94 (In Russian) | DOI
[24] Kovalev V. A., Radayev Yu. N., Volnovye zadachi teorii polia i termomekhanika [Wave Problems of Field Theory and Thermomechanics], Saratov State Univ., Saratov, 2010 (In Russian)
[25] Kovalev V. A., Radayev Yu. N., “On precisely conserved quantities of coupled micropolar thermoelastic field”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 12:4 (2012), 71–79 (In Russian) | DOI | Zbl
[26] Kovalev V. A., Radayev Yu. N., “Covariant field equations and $d$-tensors of hyperbolic thermoelastic continuum with fine microstructure”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 13:2(1) (2013), 60–68 (In Russian) | DOI | MR | Zbl
[27] Gurevich G. B., Foundations of the theory of algebraic invariants, P. Noordhoff, Groningen, 1964 | MR | Zbl
[28] Radayev Yu. N., Prostranstvennaia zadacha matematicheskoi teorii plastichnosti [Three-dimensional Problem of the Mathematical Theory of Plasticity], Samara State Univ., Samara, 2007 (In Russian) | MR