Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2019_23_4_a0, author = {M. A. Kerefov and S. Kh. Gekkieva}, title = {Second boundary-value problem for the generalized {Aller--Lykov} equation}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {607--621}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2019_23_4_a0/} }
TY - JOUR AU - M. A. Kerefov AU - S. Kh. Gekkieva TI - Second boundary-value problem for the generalized Aller--Lykov equation JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2019 SP - 607 EP - 621 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2019_23_4_a0/ LA - ru ID - VSGTU_2019_23_4_a0 ER -
%0 Journal Article %A M. A. Kerefov %A S. Kh. Gekkieva %T Second boundary-value problem for the generalized Aller--Lykov equation %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2019 %P 607-621 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2019_23_4_a0/ %G ru %F VSGTU_2019_23_4_a0
M. A. Kerefov; S. Kh. Gekkieva. Second boundary-value problem for the generalized Aller--Lykov equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 4, pp. 607-621. http://geodesic.mathdoc.fr/item/VSGTU_2019_23_4_a0/
[1] Chudnovsky A. F., Teplofizika pochv [Thermophysics of soils], Nauka, Moscow, 1976, 352 pp. (In Russian)
[2] Nakhushev A. M., Drobnoe ischislenie i ego primenenie [Fractional calculus and its applications], Fizmatlit, Moscow, 2003, 352 pp. (In Russian) | Zbl
[3] Nakhushev A. M., Uravneniia matematicheskoi biologii [Equations of mathematical biology], Vysshaia Shkola, Moscow, 1995, 301 pp. (In Russian) | Zbl
[4] Kulik V. Ya., “The study of the soil moisture movement from the point of view of invariance of continuous groups of transformations”, Issledovanie processov obmena jenergiej i veshhestvom v sisteme pochva-rastenie-vozduh [The Study of the Processes of Energy and Mass-Transfer in the System Soil-Plant-Air], Nauka, Leningrad, 1972 (In Russian)
[5] Arkhestova S. M., Shkhanukov–Lafishev M. Kh., “Difference schemes for the Aller–Lykov moisture transfer equation with a nonlocal condition”, Izvestiya KBSC RAS, 2012, no. 3, 7–16 (In Russian)
[6] Lafisheva M. M., Kerefov M. A., Dyshekova R. V., “Difference schemes for the Aller–Lykov moisture transfer equations with a nonlocal condition”, Vladikavkaz. Mat. Zh., 19:1 (2017), 50–58 (In Russian) | MR
[7] Gekkieva S. Kh., “The first boundary-value problem for the Aller–Lykov moisture transfer equations with a fractional time derivative”, Ustoychivoe razvitie: problemy, kontseptsii, modeli [Sustainable Development. Problems, Concepts, Models], KBSC RAS, Nal'chik, 2017, 99–102 (In Russian)
[8] Gekkieva S. Kh., Kerefov M. A., “The boundary-value problem for the generalized moisture transfer equation”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2018, no. 1(21), 21–31 (In Russian) | DOI | MR | Zbl
[9] Gekkieva S. Kh., “Nonlocal boundary-value problem for the generalized Aller–Lykov moisture transport equation”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2018, no. 4(24), 19–28 (In Russian) | DOI | MR | Zbl
[10] Gekkieva S. Kh., “A boundary-value problem for the generalized transport equation with a fractional time derivative”, Dokl. Adygskoi (Cherkesskoi) Mezhdunar. Akad. Nauk, 1:1 (1994), 17–18 (In Russian)
[11] Agrawal O. P., “Solution for a fractional diffusion-wave equation defined in a bounded domain”, Nonlinear Dynamics, 29:1 (2002), 145–155 | DOI | MR | Zbl
[12] Nakhusheva V. A., Differentsial'nye uravneniia matematicheskikh modelei nelokal'nykh protsessov [Differential Equations of Mathematical Models of Nonlocal Processes], Nauka, Moscow, 2006, 173 pp. (In Russian)
[13] Turmetov B. Kh., Torebek B. T., “On solvability of some boundary value problems for a fractional analogue of the Helmholtz equation”, New York J. Math., 20 (2014), 1237–1251 http://nyjm.albany.edu/j/2014/20-57p.pdf | MR | Zbl
[14] Masaeva O. Kh., “Uniqueness of solutions to Dirichlet problems for generalized Lavrent'ev–Bitsadze equations with a fractional derivative”, Electron. J. Differ. Equ., 2017 (2017), 1–8 https://ejde.math.txstate.edu/Volumes/2017/74/masaeva.pdf | MR
[15] Shogenov V. Kh., Kumykova S. K., Shkhanukov–Lafishev M. Kh., “Generalized transport equations and fractional derivatives”, Dop. Nats. Akad. Nauk Ukr., no. 12, 47–55 (In Russian) | MR
[16] Kerefov M. A., Boundary-value problems for a modified moisture transfer equation with a fractional time derivative, Cand. Phys. Math. Sci. Diss., Nal'chik, 2000, 175 pp. (In Russian)
[17] Yangarber V. A., “The mixed problem for a modified moisture-transfer equation”, J. Appl. Mech. Tech. Phys., 8:1 (1967), 62–64 | DOI
[18] Vladimirov V. S., Uravneniia matematicheskoi fiziki [Equations of mathematical physics], Nauka, Moscow, 1981, 512 pp. (In Russian) | MR
[19] Pskhu A. V., Uravneniia v chastnykh proizvodnykh drobnogo poriadka [Partial differential equations of fractional order], Nauka, Moscow, 2005, 199 pp. (In Russian)
[20] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006, xv+523 pp. | MR | Zbl
[21] Pskhu A. V., “Initial-value problem for a linear ordinary differential equation of noninteger order”, Sb. Math., 202:4 (2011), 571–582 | DOI | DOI | MR | Zbl
[22] Samarskiy A. A., Teoriia raznostnykh skhem [Theory of Difference Schemes], Nauka, Moscow, 1971, 552 pp. (In Russian) | MR