Mathematical modeling of coalescence and breakage of droplets and bubbles in an isotropic turbulent flow: A review
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 3, pp. 541-581.

Voir la notice de l'article provenant de la source Math-Net.Ru

This review devoted to the theoretical analysis, calculation, and modeling of the processes of merging and breakage of droplets and bubbles in an isotropic turbulent flow. We have analyzed a number of studies on these issues. The problems of determining the minimum and maximum sizes of droplets and bubbles, as well as breakage and merging frequencies, which are associated with the solution of the diffusion equation of mass transfer, are considered. The merging of droplets is considered as a result of the thinning of the interfacial film formed by two drops as a result of their collision. A mathematical description of the refinement of the interfacial film, taking into account the Marangoni effect, is proposed. Analysis of many studies, including our own, showed that, depending on the scale of turbulent pulsations, the extreme size, as well as the frequencies of coalescence and breakage of droplets and bubbles, depend on the specific dissipation energy in the turbulent flow, on their sizes and on the physical properties of the particles and the medium. Important parameters that provide aggregative stability of a liquid-liquid or liquid-gas type dispersion medium to breakage, deformation and fusion are the surface tension coefficient and energy dissipation, the physical properties of the medium and particles, and in an isotropic turbulent flow the ratio of the surface coefficient tension to specific energy dissipation. Problems related to the evolution of the particle distribution function in time and size under isotropic turbulence using solutions of the Fokker–Planck stochastic equation for continuous variation of the sizes of droplets and bubbles and the integro-differential kinetic equation of coalescence and fragmentation for jump-like changes in particle sizes are also considered. A set of analytical solutions of these equations for particular cases is proposed. A more in-depth analysis based on the mathematical laws of the transport phenomena makes it possible in the standard way to calculate such systems in an approximation, such as continuous, with an infinitely small jump. It is shown that the deterministic description of these phenomena without taking into account their stochastic nature is incomplete and can lead to significant deviations from the true nature of the above processes. The results obtained are compared with the existing experimental data on coalescence and breakage of droplets and bubbles, which showed satisfactory agreement with the calculated values.
Keywords: mass transfer, interfacial film, energy dissipation, aggregative stability.
Mots-clés : isotropic turbulence, surface tension
@article{VSGTU_2019_23_3_a8,
     author = {G. I. Kelbaliyev and S. R. Rasulov},
     title = {Mathematical modeling of coalescence and breakage of droplets and bubbles in an isotropic turbulent flow:  {A} review},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {541--581},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2019_23_3_a8/}
}
TY  - JOUR
AU  - G. I. Kelbaliyev
AU  - S. R. Rasulov
TI  - Mathematical modeling of coalescence and breakage of droplets and bubbles in an isotropic turbulent flow:  A review
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2019
SP  - 541
EP  - 581
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2019_23_3_a8/
LA  - ru
ID  - VSGTU_2019_23_3_a8
ER  - 
%0 Journal Article
%A G. I. Kelbaliyev
%A S. R. Rasulov
%T Mathematical modeling of coalescence and breakage of droplets and bubbles in an isotropic turbulent flow:  A review
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2019
%P 541-581
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2019_23_3_a8/
%G ru
%F VSGTU_2019_23_3_a8
G. I. Kelbaliyev; S. R. Rasulov. Mathematical modeling of coalescence and breakage of droplets and bubbles in an isotropic turbulent flow:  A review. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 3, pp. 541-581. http://geodesic.mathdoc.fr/item/VSGTU_2019_23_3_a8/

[1] Levich V. G., Physicochemical hydrodynamics, Prentice-Hall international series in the physical and chemical engineering sciences, Prentice-Hall, Englewood Cliffs, N.J., 1962 | MR | MR

[2] Soo S. L., Fluid Dynamics of multiphase systems, Blasdell Publ., Waltham, Mass., 1967 | Zbl

[3] Coulaloglou C. A., Tavlarides L. L., “Description of interaction process in agitated liquid- liquid dispersion”, Chem. Eng. Sci., 32:11 (1977), 1289–1297 | DOI

[4] Prince M. J., Blanch H. W., “Bubble coalescence and break-up in air-sparged bubble columns”, AIChE J., 36:10 (1990), 1485–1499 | DOI

[5] Hesketh R. P., Ethells A. W., Russell T. W. F., “Bubble breakage in pipeline flow”, Chem. Eng. Sci., 46:1 (1991), 1–9 | DOI

[6] Hesketh R. P., Ethells A. W., Russell T. W. F., “Experimental observations of bubble breakage in turbulent flow”, Ind. Eng. Chem. Res., 30:5 (1991), 835–841 | DOI

[7] Tsouris C., Tavlarides L., “Breakage and coalescence models for drops in turbulent dispersions”, AIChE J., 40:3 (1994), 395–406 | DOI

[8] Luo H., Svendsen H. F., “Theoretical model for drop and bubble breakup in turbulent dispersions”, AIChE J., 42:5 (1996), 1225-1233 | DOI

[9] Liu S., Li D., “Drop coalescence in turbulent dispersions”, Chem. Eng. Sci., 54:23 (1999), 5667–5675 | DOI

[10] Raymond F., Rozant J. M., “A numerical and experimental study of the terminal velocity and shape of bubbles in viscous fluids”, Chem. Eng. Sci., 55:5 (2000), 943–955 | DOI

[11] Galinat S., Masbernat O., Guiraud P., Daimazzonne C., Noik C., “Drop break-up in turbulent pipe flow downstream of a restriction”, Chem. Eng. Sci., 60:23 (2005), 6511–6528 | DOI

[12] Ceylan S., Kelbaliyev G., “Estimation of the maximum stable drop sizes, coalescence frequencies and the size distributions in isotropic turbulent dispersions”, Colloid and Surfaces A: Physicochemical Engineering Aspects, 212:2–3 (2003), 285–295 | DOI

[13] Kelbaliev G. I., Ibragimov Z. I., “Coalescence and fragmentation of drops in an isotropic turbulent flow”, Theor. Found. Chem. Eng., 43:3 (2009), 314–320 | DOI

[14] Sarimeseli A., Kelbaliyev G., “Modeling of the break-up of deformable particles in developed turbulent flow”, Chem. Eng. Sci., 59:6 (2004), 1233–1240 | DOI

[15] Kelbaliyev G. I., Rasulov S. R., Gidrodinamika i massoperenos v dispersnykh sredakh [Hydrodynamics and Mass Transfer in Dispersed Media], Khimizdat, St. Petersburg, 2014 (In Russian)

[16] Blanchette F., Bigioni T. P., “Dynamics of drop coalescence at fluid interfaces”, J. Fluid Mech., 620 (2009), 333–352 | DOI | MR | Zbl

[17] Narhe R., Beysens D., Nikolayev V. S., “Dynamics of drop coalescence on a surface: The role of initial conditions and surface properties”, Int. J. Thermophys., 26:6 (2005), 1743–1757 | DOI

[18] Balmforth N. J., Llewellyn Smith S. G., Young W. R., “Dynamics of interfaces and layers in a stratified turbulent fluid”, J. Fluid Mech., 355 (1998), 329–358 | DOI | MR | Zbl

[19] Sis H., Kelbaliyev G., Chander S., “Kinetics of drop breakage in stirred vessels under turbulent conditions”, J. Dispersion Sci. and Technology, 26:5 (2005), 565–573 | DOI

[20] Liao Y., Lucas D., “A literature review of theoretical models for drop and bubble breakup in turbulent dispersions”, Chem. Eng. Sci., 64:15 (2009), 3389–3406 | DOI

[21] Walter J. F., Blanch H. W., “Bubble break-up in gas–liquid bioreactors: break-up in turbulent flows”, Chem. Eng. J., 32:1 (1986), B7–B17 | DOI

[22] Narsimhan G., “Model for drop coalescence in a locally isotropic turbulent flow field”, J. Coll. Interf. Sci., 272:1 (2004), 197–209 | DOI | MR

[23] Wong D. C. Y., Simmons M. J. H., Decent S. P., Parau E. I., King A. C., “Break-up dynamics and drop size distributions created from spiraling liquid jets”, Intern. J. Multiphase Flow, 30:5 (2004), 499–520 | DOI | MR | Zbl

[24] Kraume M., Gäbler A., Schulze K., “Influence of physical properties on drop size distribution of stirred liquid-liquid dispersions”, Chem. Eng. Tech., 27:3 (2004), 330–334 | DOI

[25] Revankar S. T., “Coalescence and breakup of fluid particles in multi-phase flow”, ICMF–4th International Conference on Multiphase Flow (New Orleans, Louisiana, USA, May 27–June 1), 2001

[26] Vanni M., “Approximate population balance equations for aggregation-breakage processes”, J. Coll. Interf. Sci., 221:2 (2000), 143–160 | DOI

[27] Attarakih M. M., Bart H. J., Faqir N. M., “Solution of the droplet breakage equation for interacting liquid–liquid dispersions: a conservative discretization approach”, Chem. Eng. Sci., 59:12 (2004), 2547–2565 | DOI

[28] Maniero R., Masbernat O., Climent E., Risso F., “Modeling and simulation of inertial drop break-up in a turbulent pipe flow downstream of a restriction”, Intern. J. Multiphase Flow, 42 (2012), 1–8 | DOI

[29] Tobin T., Muralidhar R., Wright H., Ramkrishna D., “Determination of coalescence frequencies in liquid–liquid dispersions: Effect of drop size dependence”, Chem. Eng. Sci., 45:12 (1990), 3491–3504 | DOI

[30] Simmons M. J. H., Azzopardi B. J., “Drop size distribution in dispersed liquid–liquid pipe flow”, Intern. J. Multiphase Flow, 27:5 (2001), 843–859 | DOI | Zbl

[31] Angeli P., Hewitt O. F., “Drop size distribution in horizontal oil–water dispersed flow”, Chem. Eng. Sci., 55:16 (2000), 3133–3143 | DOI

[32] Voloshchuk V. M., Sedunov Yu. S., Protsessy koaguliatsii v dispersnykh sistemakh [Coagulation Processes in Dispersed Systems], Gidrometeoizdat, Leningrad, 1975 (In Russian)

[33] Lasheras J., Martín-Bazán C., Montañés J., “On the break-up of air bubble injected into fully developed turbulent flow. Part 1: Break-up frequency”, 30th Fluid Dynamics Conference, 1999 | DOI

[34] Fei Y., Pang M., “Bubble Coalescence and Breakup Phenomena: A Review”, Recent Patents on Engineering, 11:2 (2017), 80-88 | DOI

[35] Kostoglou M., Karabelas A. J., “A contribution towards predicting the evolution of droplet size distribution in flowing dilute liquid/liquid dispersions”, Chem. Eng. Sci., 56:14 (2001), 4283–4292 | DOI

[36] Mednikov E. P., Turbulentnyi perenos i osazhdenie aerozolei [Turbulent Transfer and Deposition of Aerosols], Nauka, Moscow, 1982 (In Russian)

[37] Altunbas̨ A., Kelbaliyev G., Ceylan K., “Eddy diffusivity of particles in turbulent flow in rough cannels”, J. Aerosol Sci., 33:7 (2002), 1075–1086 | DOI

[38] Hinze J. O., “Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes”, AIChE J., 1:3 (1955), 289–295 | DOI

[39] Roccon A., De Paoli M., Zonta F., Soldati A., “Viscosity-modulated breakup and coalescence of large drops in bounded turbulence”, Phys. Rev. Fluids, 2:8 (2017), 083603 | DOI

[40] Baldyga J., Bourne J. R., “Interpretation of turbulent mixing using fractals and multifractals”, Chem. Eng. Sci., 50:3 (1995), 381–400 | DOI

[41] Qian D., McLaughlin J. B., Sankaranayanan K., Sundaresan S., Kontomaris K., “Simulation of bubble breakup dynamics in homogeneous turbulence”, Chem. Eng. Comm., 193:8 (2006), 1038–1063 | DOI

[42] Clift R., Grace J. R., Weber M. E., Bubbles, drops and particles, Academic Press, New York, 1978

[43] Kelbaliyev G., Ceylan K., “Development of new empirical equations for estimation of drag coefficient, shape deformation and rising velocity gas bubbles or liquid drops”, Chem. Eng. Comm., 194:12 (2007), 1623–1637 | DOI

[44] Kelbaliyev G. I., “Drag coefficients of variously shaped solid particles, drops, and bubbles”, Theor. Found. Chem. Eng., 45:3 (2011), 248–266 | DOI

[45] Evans G. M., Jameson G. J., Atkinson B. W., “Prediction of bubble size generated by a plunging liquids jet bubble column”, Chem. Eng. Sci., 47:13–14 (1992), 3265–3272 | DOI

[46] Biń A. K., “Gas entrainment by plunging liquid jets”, Chem. Eng. Sci., 48:21 (1993), 3585–3630 | DOI

[47] Sis H., Chander S., “Kinetics of emulsification of dodecane in the absence and presence of nonionic surfactants”, Colloids and Surface A: Physicochemical Aspects, 235:1–3 (2004), 113–120 | DOI

[48] Pilch M., Erdman C. A., “Use of breakup them data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop”, Int. J. Multiphase Flow, 13:6 (1987), 741–757 | DOI

[49] Castellano S., Sheibat-Othman N., Marchisio M., Buffo A., Charton S., “Description of droplet coalescence and breakup in emulsions through a homogeneous population balance model”, Chem. Eng. J., 354 (2018), 1197-1207 | DOI

[50] Vankova N., Tcholakova S., Denkov N. D., Ivanov I. B., Vulchev V. D., Danner T., “Emulsification in turbulent flow: 1. Mean and maximum drop diameters in inertial and viscous regimes”, J. Coll. Interf. Sci., 312:2 (2007), 363–380 | DOI

[51] Sleicher C. A., “Maximum stable drop size in turbulent flow”, AIChE J., 8:4 (2004), 471–477 | DOI

[52] Kelbaliyev G., Sarimeseli A., “Modeling of drop coalescence in isotropic flow”, J. Disp. Sci. Technol., 27:4 (2006), 443–451 | DOI

[53] Yuan S., Fan Y., Li J., Cao Y., “Influence of droplet coalescence and breakup on the separation process in wave-plate separators”, Canad. J. Chem. Eng., 96:7 (2018), 1627–1636 | DOI

[54] Somwanshi P., Muralidhar K., Khandekar S., “Influence of drop shape and coalescence on dropwise condensation over textured surfaces”, Proceedings of the 15th International Heat Transfer Conference, IHTC-15, 2014, 251–270 | DOI

[55] Hagesaether L., Jakobsen H. A., Svendsen H. F., “A model for turbulent binary breakup of dispersed fluid particles”, Chem. Eng. Sci., 57:16 (2002), 3251–3267 | DOI

[56] Wang T., Wang J., Jin Y., “A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow”, Chem. Eng. Sci., 58:20 (2003), 4629–4637 | DOI

[57] Chatzi E., Lee J. M., “Analysis of interactions for liquid–liquid dispersions in agitated vessels”, Ind. Eng. Chem. Res., 26:11 (1987), 2263–2267 | DOI

[58] Chatzi E., Kiparissides C., “Dynamic simulation of bimodal drop size distributions in low-coalescence batch dispersion systems”, Chem. Eng. Sci., 47:2 (1992), 445–456 | DOI

[59] Alopaeus V., Koskinen J., Keskinen K. I., Majander J., “Simulation of the population balances for liquid–liquid systems in a nonideal stirred tank. Part 2: Parameter fitting and the use of the multiblock model for dense dispersions”, Chem. Eng. Sci., 57:10 (2002), 1815–1825 | DOI

[60] Lehr F., Milles M., Mewes D., “Bubble-size distributions and flow fields in bubble columns”, AIChE J., 48:11 (2002), 2426–2443 | DOI

[61] Konno M., Aoki M., Saito S., “Scale effect on breakup process in liquid–liquid agitated tanks”, J. Chem. Eng. Japan, 16:4 (1983), 312–319 | DOI

[62] Bhaga D., Weber M. E., “Bubbles in viscous liquids: shape, wakes and velocities”, J. Fluid Mech., 105 (1981), 61–85 | DOI

[63] Brounstein B. I., Shchegolev V. V., Gidrodinamika, massoobmen i teploobmen v kolonnykh apparatakh [Hydrodynamics, Mass Transfer and Heat Transfer in Сolumn Apparatus], Khimiya, Leningrad, 1988 (In Russian)

[64] Fanton X., Cazabat A. M., Quéré D., “Thickness and shape of films driven by a Marangoni flow”, Langmuir, 12:24 (1996), 5875–5880 | DOI

[65] Leo L. Y., Matar O. K., Susana Pérez de Ortiz E., Hewitt G. F., “A description of phase inversion behavior in agitated liquid-liquid dispersions under the Marangoni effect”, Chem. Eng. Sci., 57:17 (2002), 3505–3520 | DOI

[66] Scheludko A., “Thin liquid film”, Adv. Colloid Interf. Sci., 1:4 (1967), 391–464 | DOI

[67] Chen J.-D., Slattery J. C., “Effects of London-van der Waals forces on the thinning of a dimpled liquid films as a small drop or bubble approaches a horizontal solid phase”, AIChE J., 28:6 (1982), 955–963 | DOI

[68] Kelbaliev G. I., Safarov F. F., “Study of interphase film thinning in petroleum emulsion separation processes”, Chem. Technol. Fuels Oils, 47:4 (2011), 268–277 | DOI

[69] Sherman Ph., Emulsion Science, Academic Press, London, New York, 1968

[70] Petrov A. A., Blatova S. A., “An investigation of the stability of hydrocarbon layers at the boundary with aqueous solutions of de-emulsifiers”, Chem. Technol. Fuels Oils, 5:5 (1969), 343–350 | DOI

[71] Burrill K. A., Woods D. R., “Film shapes for deformable drops at liquid-liquid interfaces. II. The mechanisms of film drainage”, J. Coll. Interf. Sci., 42:1 (1973), 15–34 | DOI

[72] Lasheras J. C., Eastwood C., Martín-Bazán C., Montañés J. I., “A review of statistical models for the break–up of an immiscible fluid immersed into a fully developed turbulent flow”, Inter. J. Multiphase Flow, 28:2 (2002), 247–278 | DOI | MR | Zbl

[73] Gardiner C. W., Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, Springer Series in Synergetics, Springer, New York, 1985 | DOI | MR

[74] Protodyakonov I. O., Bogdanov S. R., Statisticheskaia teoriia iavlenii perenosa v protsessakh khimicheskoi tekhnologii [Statistical Theory of Transfer Phenomena in the Processes of Chemical Technology], Khimiya, Leningrad, 1983 (In Russian)

[75] Melzak Z. A., “A scalar transport equation”, Trans. Amer. Math. Soc., 85 (1957), 547–560 | DOI | MR | Zbl

[76] Higashitani K., Yamanchi K., Matsuno Y., Hosokawa G., “Turbulent coagulation of particles dispersed in a viscous fluid”, J. Chem. Eng. Japan, 16:4 (1983), 299–304 | DOI

[77] Kelbaliyev G. I., Rasulov S. R., Mustafayeva G. R., “Modeling of phenomena of drop coalescence in oil emulsion breaking processes”, Chem. Technol. Fuels Oils, 54:2 (2018), 158–165 | DOI

[78] Golovin A. M., “On solving the equation of rain drop coagulation with allowance for condensation”, Dokl. Akad. Nauk SSSR, 148:6 (1963), 1290–1293 (In Russian)

[79] Alopaeus V., Laakkonen M., Aittamaa J., “Solution of population balances with breakage and agglomeration by high-order moment-conserving method of classes”, Chem. Eng. Sci., 61:20 (2006), 6732–6752 | DOI

[80] Maaß S., Wollny S., Sperling R., Kraume M., “Numerical and experimental analysis of particle strain and breakage in turbulent dispersions”, Chem. Eng. Res. Des., 87:4 (2009), 565–572 | DOI

[81] Aristov S. N., Prosviryakov E. Yu., “On one class of analytic solutions of the stationary axisymmetric convection Bénard–Marangoni viscous incompressible fluid”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2013, no. 3(32), 110–118 (In Russian) | DOI | Zbl

[82] Vlasova S. S., Prosviryakov E. Yu., “Two-dimensional convection of an incompressible viscous fluid with the heat exchange on the free border”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:3 (2016), 567–577 | DOI | Zbl

[83] Privalova V. V., Prosviryakov E. Yu., “Couette–Hiemenz exact solutions for the steady creeping convective flow of a viscous incompressible fluid, with allowance made for heat recovery”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:3 (2018), 532–548 | DOI | Zbl

[84] Sajjadi S., Zerfa M., Brooks B. W., “Dynamic behaviour of drops in oil/water/oil dispersions”, Chem. Eng. Sci., 57:4 (2002), 663–675 | DOI

[85] Poston T., Stewart I., Catastrophe theory and its applications, Surveys and Reference Works in Mathematics, 2, Pitman, London, 1978, xviii+491 pp. | MR | Zbl

[86] Sevik M., Park S. H., “The splitting of drops and bubbles by turbulent fluid flow”, J. Fluids Eng., 95:1 (1973), 53–60 | DOI

[87] Risso F., Farbe J., “Oscillations and breakup of a bubble immersed in a turbulent field”, J. Fluid Mech., 372 (1998), 323–335 | DOI

[88] Kelbaliyev G. I., Suleimanov G. Z., Zorofi P. A., Gasanov A. A., Rustamova A. I., “Extraction separation and cleaning of sewage waters by organic solvents with recirculation”, Russ. J. Appl. Chem., 84:6 (2011), 1114–1119 | DOI

[89] Sjöblom J., Urdahl O., Høiland H., Christy A. A., Johansen E. J., “Water-in-crude oil emulsions. Formation, characterization, and destabilization”, Surfactants and Macromolecules: Self-Assembly at Interfaces and in Bulk, Progress in Colloid and Polymer Science, 82, Steinkopff, Darmstadt, 1990, 131–139 | DOI

[90] Pozdnyshev G. N., Stabilizatsiia i razrushenie neftianykh emul'sii [Stabilization and destruction of oil emulsions], Nedra, Moscow, 1982 (In Russian)

[91] Tronov V. P., Razrushenie emul'sii pri dobyche nefti [The destruction of emulsions in oil production], Nedra, Moscow, 1974 (In Russian)