Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2019_23_3_a7, author = {A. A. Butov and A. A. Kovalenko}, title = {Stochastic models of just-in-time systems and windows of vulnerability in terms of the processes of birth and death}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {525--540}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2019_23_3_a7/} }
TY - JOUR AU - A. A. Butov AU - A. A. Kovalenko TI - Stochastic models of just-in-time systems and windows of vulnerability in terms of the processes of birth and death JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2019 SP - 525 EP - 540 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2019_23_3_a7/ LA - en ID - VSGTU_2019_23_3_a7 ER -
%0 Journal Article %A A. A. Butov %A A. A. Kovalenko %T Stochastic models of just-in-time systems and windows of vulnerability in terms of the processes of birth and death %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2019 %P 525-540 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2019_23_3_a7/ %G en %F VSGTU_2019_23_3_a7
A. A. Butov; A. A. Kovalenko. Stochastic models of just-in-time systems and windows of vulnerability in terms of the processes of birth and death. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 3, pp. 525-540. http://geodesic.mathdoc.fr/item/VSGTU_2019_23_3_a7/
[1] Rajasooriya S. M., Tsokos C. P., Kaluarachchi P. K., “Stochastic modelling of vulnerability life cycle and security risk evaluation”, Journal of information Security, 7:4 (2016), 269–279 | DOI | MR
[2] Kaluarachchi P. K., Tsokos C. P., Rajasooriya S. M., “Cybersecurity: a statistical predictive model for the expected path length”, Journal of information Security, 7:3 (2016), 112–128 | DOI | MR
[3] Kaluarachchi P. K., Tsokos C. P., Rajasooriya S. M., “Non-homogeneous stochastic model for cyber security predictions”, Journal of information Security, 9:1 (2018), 12–24 | DOI
[4] Butov A. A., Kovalenko A. A., “Stochastic models of simple controlled systems just-in-time”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:3 (2018), 518–531 | DOI | Zbl
[5] Sugimori Y., Kusunoki K., Cho F., Uchikawa S., “Toyota production system and kanban system materialization of just-in-time and respect-for-human system”, Int. J. Prod. Res., 15:6 (1977), 553–564 | DOI
[6] Yavuz M., “Fuzziness in JIT and Lean Production Systems.”, Production Engineering and Management under Fuzziness, Studies in Fuzziness and Soft Computing, 252, Springer, Berlin, Heidelberg, 2010, 59–75 | DOI | Zbl
[7] Killi S., Morrison A., “Just-in-Time Teaching, Just-in-Need Learning: Designing towards Optimized Pedagogical Outcomes”, Universal Journal of Educational Research, 3:10 (2015), 742–750 | DOI
[8] Pape T., Bolz C. F., Hirschfeld R., “Adaptive just-in-time value class optimization for lowering memory consumption and improving execution time performance”, Science of Computer Programming, 140 (2017), 17–29 | DOI
[9] Chakrabarty R., Roy T., Chaudhuri K., “A production-inventory model with stochastic lead time and JIT set up cost”, Int. J. Oper. Res., 33:2 (2018), 161–178 | DOI | MR
[10] Föllmer H., “Random fields and diffusion processes”, École d'Été de Probabilités de Saint-Flour XV–XVII. 1985–87, Lecture Notes in Mathematics, 1362, Springer, Berlin, Heidelberg, 1988, 101–203 | DOI | MR
[11] Jacod J., Protter P., “Time Reversal on Lévy Processes”, Ann. Probab., 16:2 (1988), 620–641 | DOI | MR | Zbl
[12] Elliott R. J., Tsoi A. H., “Time reversal of non-Markov point processes”, Ann. Inst. Henri Poincaré, Probab. Stat., 26:2 (1990), 357–373 https://eudml.org/doc/77383 | MR | Zbl
[13] Privault N., Zambrini J.-C., “Markovian bridges and reversible diffusion processes with jumps”, Ann. Inst. Henri Poincaré, Probab. Stat., 40:5 (2004), 599–633 | DOI | MR | Zbl
[14] Conforti G., Léonard C., Murr R., Roelly S., “Bridges of Markov counting processes. Reciprocal classes and duality formulas”, Electron. Commun. Prob., 20 (2015), 18, 12 pp. | DOI | MR | Zbl
[15] Longla M., “Remarks on limit theorems for reversible Markov processes and their applications”, J. Stat. Plan. Inference., 187 (2017), 28–43 | DOI | MR | Zbl
[16] Ho L. S. T., Xu J., Crawford F. W., et al., “Birth/birth-death processes and their computable transition probabilities with biological applications”, J. Math. Biol., 76:4 (2018), 911–944 | DOI | MR | Zbl
[17] Butov A. A., “Some estimates for a one-dimensional birth and death process in a random environment”, Theory Probab. Appl., 36:3 (1991), 578–583 | DOI | MR | Zbl
[18] Butov A. A., “Martingale methods for random walks in a one-dimensional random environment”, Theory Probab. Appl., 39:4 (1994), 558–572 | DOI | MR | Zbl
[19] Butov A. A., “Random walks in random environments of a general type”, Stoch. Stoch. Reports, 48 (1994), 145–160 | DOI | MR | Zbl
[20] Butov A. A., “On the problem of optimal instant observations of the linear birth and death processes”, Stat. Probab. Lett., 101 (2015), 49–53 | DOI | MR | Zbl
[21] Dellacherie C., Capacités et processus stochastiques, Springer-Verlag, Berlin, 1972, ix+155 pp | DOI | MR