Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2019_23_3_a0, author = {G. B. Sizykh}, title = {Closed vortex lines in fluid and gas}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {407--416}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2019_23_3_a0/} }
TY - JOUR AU - G. B. Sizykh TI - Closed vortex lines in fluid and gas JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2019 SP - 407 EP - 416 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2019_23_3_a0/ LA - en ID - VSGTU_2019_23_3_a0 ER -
G. B. Sizykh. Closed vortex lines in fluid and gas. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 3, pp. 407-416. http://geodesic.mathdoc.fr/item/VSGTU_2019_23_3_a0/
[1] Prim R., Truesdell C., “A derivation of Zorawski’s criterion for permanent vector-lines”, Proc. Amer. Math. Soc., 1:1 (1950), 32–34 | DOI | MR | Zbl
[2] Kochin N. E., Kibel I. A., Roze I. V., Theoretical Hydromechanics, Wiley, New York, 1964, v+577 pp. | MR | Zbl
[3] Golubinskii A. I., Sychev V. V., “Some conservation properties of turbulent gas flows”, Dokl. Akad. Nauk SSSR, 237:4 (1977), 798–799 (In Russian) | MR | Zbl
[4] Mobbs S., “Some vorticity theorems and conservation laws for non-barotropic fluids”, J. Fluid Mech., 108 (1981), 475–483 | DOI | MR | Zbl
[5] Golubinskii A. I., Golubkin V. N., “On certain conservation properties in gas dynamics”, J. Appl. Math. Mech., 49:1 (1985), 88–95 | DOI | MR
[6] Markov V. V., Sizykh G. B., “Vorticity evolution in liquids and gases”, Fluid Dyn., 50:2 (2015), 186–192 | DOI | MR | Zbl
[7] Krocco L., “Eine neue Stromfunktion für die Erforschung der Bewegung der Gase mit Rotation”, Z. Angew. Math. Mech., 17:1 (1937), 1–7 (In German) | DOI
[8] Truesdell C., “On curved shocks in steady plane flow of an ideal fluid”, J. Aeronaut. Sci., 1952, no. 19, 826–828 | DOI | MR | Zbl
[9] Hayes W. D., “The vortycity jump across a gasdynamic discontinuities”, J. Fluid Mech., 1957, no. 2, 595–600 | Zbl
[10] Levin V. A., Markov V. V., Sizykh G. B., “Vorticity on the Surface of an Axially Symmetric Body behind a Detached Shock Wave”, Doklady Physics, 63:12 (2018), 530–532 | DOI
[11] Sizykh G. B., “Entropy Value on the Surface of a Non-Symmetric Convex Bow Part at Supersonic Streamlining”, Fluid Dyn., 54 (2019) (to appear) | DOI
[12] Beltrami E., “Considerazioni idrodinamiche”, Il Nuovo Cimento Series 3, 25:1 (1889), 212–222 | DOI | Zbl
[13] Biushgens S. S., “On Helical Flow”, Nauchn. Zapiski Mosk. Gidrom. Inst. (MGMI), 17 (1948), 73–90 (In Russian)
[14] Sizykh G. B., “Axisymmetric Helical Flows of Viscous Fluid”, Russian Mathematics, 63:2 (2019), 44–50 | DOI
[15] Sizykh G. B., “Helical Vortex Lines in Axisymmetric Viscous Incompressible Fluid Flows”, Fluid Dyn., 54 (2019) (to appear) | DOI
[16] Kotsur O. S., “On the existence of local formulae of the transfer velocity of local tubes that conserve their strengths”, Proceedings of MIPT, 11:1 (2019), 76–85 (In Russian)
[17] Rowland H., “On the Motion of a Perfect Incompressible Fluid When no Solid Bodies are Present”, Am. J. Math, 3:3 (1880), 226–268 | DOI | MR
[18] Lamb H., Hydrodynamics, Cambridge Univ. Press, Cambridge, 1895, xvii+604 pp. | DOI | MR | Zbl
[19] Hamel G., “Ein allgemeiner Satz über den Druck bei der Bewegung volumbeständiger Flüssigkeiten”, Monatsh. Math. Phys., 43:1 (1936), 345–363 (In German) | DOI | MR
[20] Truesdell C., “Two measures of vorticity”, Indiana Univ. Math. J., 2:2 (1953), 173–217 | DOI | MR | Zbl
[21] Vyshinsky V. V., Sizykh G. B., “The verification of the calculation of stationary subsonic flows and the presentation of the results”, Mathematical Models and Computer Simulations, 11:1 (2019), 97–106 | DOI | MR
[22] Golubkin V. N., Sizykh G. B., “On the vorticity behind 3-D detached bow shock wave”, Advances in Aerodynamics, 1:1 (2019), 15 | DOI
[23] Troshin A., Shiryaeva A., Vlasenko V., Sabelnikov V., “Large-Eddy Simulation of Helium and Argon Supersonic Jets in Supersonic Air Co-flow”, Progress in Turbulence VIII. iTi 2018, Springer Proceedings in Physics, 226, 2019, 253–258 | DOI
[24] Vyshinsky V. V., Sizykh G. B., “Verification of the Calculation of Stationary Subsonic Flows and Presentation of Results”, Smart Modeling for Engineering Systems. GCM50 2018, Smart Modeling for Engineering Systems, 133, Springer, Cham, 2019, 530–532 | DOI | MR
[25] Afonina N. E., Gromov V. G., Levin V. A., Manuilovich I. S., Markov V. V., Smekhov G. D., Khmelevskii A. N., “Investigation of the annular nozzle start in actual and virtual intermittent aerodynamic setups”, Fluid Dyn., 51:2 (2016), 281–287 | DOI | MR | Zbl
[26] Dergachev S. A., Marchevsky I. K., Scheglov G. A., “Flow simulation around 3D bodies by using Lagrangian vortex loops method with boundary condition satisfaction with respect to tangential velocity components”, Aerospace Science and Technology, 2019, 105374 (to appear) | DOI
[27] Borovoy V. Y., Egorov I. V., Skuratov A. S., Struminskaya I. V., “Two-Dimensional Shock-Wave/Boundary-Layer Interaction in the Presence of Entropy Layer”, AIAA Journal, 51:1 (2013), 80–93 | DOI
[28] Egorov I. V., Novikov A. V., “Direct numerical simulation of laminar–turbulent flow over a flat plate at hypersonic flow speeds”, Comput. Math. Math. Phys., 56:6 (2016), 1048–1064 | DOI | MR | Zbl
[29] Pontryagin L. S., Ordinary differential equations, Adiwes International Series in Mathematics, Pergamon Press, London, Paris, 1962, vi+298 pp. | MR | Zbl