The existence of chaotic regimes of the fractional analogue of the Duffing-type oscillator
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 2, pp. 378-393.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the chaotic regimes of the fractional Duffing oscillator. To do this, using the Wolf algorithm with Gram–Schmidt orthogonalization, we calculated the spectra of maximum Lyapunov exponents depending on the values of the control parameters, on the basis of which bifurcation diagrams were constructed. Bifurcation diagrams made it possible to determine areas in which a chaotic oscillatory regime exists. Phase trajectories were also constructed, which confirmed the research results.
Keywords: Duffing-type fractal oscillator, Gram–Schmidt orthogonalization, Wolf's algorithm, maximum exponent spectrum, fractional derivative Gerasimov–Caputo, bifurcation diagrams, phase trajectories.
@article{VSGTU_2019_23_2_a9,
     author = {R. I. Parovik},
     title = {The existence of chaotic regimes of the fractional analogue of the {Duffing-type} oscillator},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {378--393},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a9/}
}
TY  - JOUR
AU  - R. I. Parovik
TI  - The existence of chaotic regimes of the fractional analogue of the Duffing-type oscillator
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2019
SP  - 378
EP  - 393
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a9/
LA  - ru
ID  - VSGTU_2019_23_2_a9
ER  - 
%0 Journal Article
%A R. I. Parovik
%T The existence of chaotic regimes of the fractional analogue of the Duffing-type oscillator
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2019
%P 378-393
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a9/
%G ru
%F VSGTU_2019_23_2_a9
R. I. Parovik. The existence of chaotic regimes of the fractional analogue of the Duffing-type oscillator. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 2, pp. 378-393. http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a9/

[1] Akhromeeva T S., Kurdyumov S. P., Malinetskiy G. G., Samarskiy A. A., Struktury i khaos v nelineynykh sredakh [Structures and chaos in nonlinear media], Fizmatlit, Moscow, 2007, 488 pp. (In Russian)

[2] Fedorov V. K., Fedyanin V. V., “Features of regimes of deterministic chaos of constant voltage converters for wind and solar power plants”, Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 327:3 (2016), 47–56 (In Russian)

[3] Aliver V. Yu., “Chaotic regimes in continuous dynamic systems”, Herald of the Bauman Moscow State Technical University. Instrument Engineering, 2006, no. 1, 65–84 (In Russian)

[4] Beninca E, Ballantine B., Ellner S. P., Huisman J., “Species fluctuations sustained by a cyclic succession at the edge of chaos”, Proc. Natl. Acad. Sci., 112:20 (2015), 6389–6394 | DOI

[5] Solé R. V., Valls J., “On structural stability and chaos in biological systems”, J. Theor. Biol., 155:1 (1992), 87–102 | DOI

[6] Bodalea I., Oancea V. A., “Chaos control for Willamowski–Rössler model of chemical reactions”, Chaos, Solitons and Fractals, 78 (2015), 1–9 | DOI | MR

[7] Palanivel J., Suresh K., Sabarathinam S., Thamilmaran K., “Chaos in a low dimensional fractional order nonautonomous nonlinear oscillator”, Chaos, Solitons and Fractals, 95 (2017), 33–41 | DOI | MR | Zbl

[8] Parovik R. I., “Mathematical modeling of nonlocal oscillatory Duffing system with fractal friction”, Bulletin KRASEC. Phys. Math. Sci., 10:1 (2015), 16–21 | DOI | DOI | Zbl

[9] Syta A., Litak G., Lenci S., Scheffler M., “Chaotic vibrations of the Duffing system with fractional damping”, Chaos, 24:1 (2014), 013107 | DOI | MR | Zbl

[10] Liu Q. X., Liu J. K., Chen Y. M., “An analytical criterion for jump phenomena in fractional Duffing oscillators”, Chaos, Solitons Fractals, 98 (2017), 216–219 | DOI | MR | Zbl

[11] Parovik R. I., “Chaotic regimes of a fractal nonlinear oscillator”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:2 (2018), 364–379 (In Russian) | DOI | MR | Zbl

[12] Gerasimov A. N., “A generalization of linear laws of deformation and its application to internal friction problem”, Prikl. Mat. Mekh., 12:3 (1948), 251–260 (In Russian) | Zbl

[13] Caputo M., Elasticità e dissipazione, Zani-Chelli, Bologna, 1969, 150 pp.

[14] Diethelm K., The analysis of fractional differential equations. An application-oriented exposition using differential operators of Caputo type, Lecture Notes in Mathematics, 2004, Springer, Berlin, 2010, viii+247 pp. | DOI | MR | Zbl

[15] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam, 2006, xvi+523 pp. | DOI | MR | Zbl

[16] Parovik R. I., “The existence and uniqueness of the Cauchy problem for fractal of the nonlinear equation of the oscillator”, Uzbek Math. J., 2017, no. 4, 110–118 (In Russian) | MR

[17] Parovik R. I., “Mathematical model of a wide class memory oscillators”, Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming Computer Software, 11:2 (2018), 108–122 | DOI | MR | Zbl

[18] Wolf A., Swift J. B., Swinney H. L., Vastano J. A., “Determining Lyapunov exponents from a time series”, Physica D: Nonlinear Phenomena, 16:3 (1985), 285–317 | DOI | MR | Zbl