Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2019_23_2_a9, author = {R. I. Parovik}, title = {The existence of chaotic regimes of the fractional analogue of the {Duffing-type} oscillator}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {378--393}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a9/} }
TY - JOUR AU - R. I. Parovik TI - The existence of chaotic regimes of the fractional analogue of the Duffing-type oscillator JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2019 SP - 378 EP - 393 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a9/ LA - ru ID - VSGTU_2019_23_2_a9 ER -
%0 Journal Article %A R. I. Parovik %T The existence of chaotic regimes of the fractional analogue of the Duffing-type oscillator %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2019 %P 378-393 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a9/ %G ru %F VSGTU_2019_23_2_a9
R. I. Parovik. The existence of chaotic regimes of the fractional analogue of the Duffing-type oscillator. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 2, pp. 378-393. http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a9/
[1] Akhromeeva T S., Kurdyumov S. P., Malinetskiy G. G., Samarskiy A. A., Struktury i khaos v nelineynykh sredakh [Structures and chaos in nonlinear media], Fizmatlit, Moscow, 2007, 488 pp. (In Russian)
[2] Fedorov V. K., Fedyanin V. V., “Features of regimes of deterministic chaos of constant voltage converters for wind and solar power plants”, Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 327:3 (2016), 47–56 (In Russian)
[3] Aliver V. Yu., “Chaotic regimes in continuous dynamic systems”, Herald of the Bauman Moscow State Technical University. Instrument Engineering, 2006, no. 1, 65–84 (In Russian)
[4] Beninca E, Ballantine B., Ellner S. P., Huisman J., “Species fluctuations sustained by a cyclic succession at the edge of chaos”, Proc. Natl. Acad. Sci., 112:20 (2015), 6389–6394 | DOI
[5] Solé R. V., Valls J., “On structural stability and chaos in biological systems”, J. Theor. Biol., 155:1 (1992), 87–102 | DOI
[6] Bodalea I., Oancea V. A., “Chaos control for Willamowski–Rössler model of chemical reactions”, Chaos, Solitons and Fractals, 78 (2015), 1–9 | DOI | MR
[7] Palanivel J., Suresh K., Sabarathinam S., Thamilmaran K., “Chaos in a low dimensional fractional order nonautonomous nonlinear oscillator”, Chaos, Solitons and Fractals, 95 (2017), 33–41 | DOI | MR | Zbl
[8] Parovik R. I., “Mathematical modeling of nonlocal oscillatory Duffing system with fractal friction”, Bulletin KRASEC. Phys. Math. Sci., 10:1 (2015), 16–21 | DOI | DOI | Zbl
[9] Syta A., Litak G., Lenci S., Scheffler M., “Chaotic vibrations of the Duffing system with fractional damping”, Chaos, 24:1 (2014), 013107 | DOI | MR | Zbl
[10] Liu Q. X., Liu J. K., Chen Y. M., “An analytical criterion for jump phenomena in fractional Duffing oscillators”, Chaos, Solitons Fractals, 98 (2017), 216–219 | DOI | MR | Zbl
[11] Parovik R. I., “Chaotic regimes of a fractal nonlinear oscillator”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:2 (2018), 364–379 (In Russian) | DOI | MR | Zbl
[12] Gerasimov A. N., “A generalization of linear laws of deformation and its application to internal friction problem”, Prikl. Mat. Mekh., 12:3 (1948), 251–260 (In Russian) | Zbl
[13] Caputo M., Elasticità e dissipazione, Zani-Chelli, Bologna, 1969, 150 pp.
[14] Diethelm K., The analysis of fractional differential equations. An application-oriented exposition using differential operators of Caputo type, Lecture Notes in Mathematics, 2004, Springer, Berlin, 2010, viii+247 pp. | DOI | MR | Zbl
[15] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam, 2006, xvi+523 pp. | DOI | MR | Zbl
[16] Parovik R. I., “The existence and uniqueness of the Cauchy problem for fractal of the nonlinear equation of the oscillator”, Uzbek Math. J., 2017, no. 4, 110–118 (In Russian) | MR
[17] Parovik R. I., “Mathematical model of a wide class memory oscillators”, Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming Computer Software, 11:2 (2018), 108–122 | DOI | MR | Zbl
[18] Wolf A., Swift J. B., Swinney H. L., Vastano J. A., “Determining Lyapunov exponents from a time series”, Physica D: Nonlinear Phenomena, 16:3 (1985), 285–317 | DOI | MR | Zbl