Effective computational procedure of the alternance optimization method
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 2, pp. 361-377.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article discusses the computational procedure of the alternance optimization method as applied to the problem of semi-infinite programming. These problems are reduced numerous applied problems of optimization of objects with distributed and lumped parameters: robust parametric optimization of dynamic systems, parametric synthesis of control systems, etc. Since the calculation of alternance optimization method is rather difficult, as reduced to the solution, as a rule, the transcendental system of constitutive equations is proposed for efficient computational complexity of an embodiment of a computational procedure. To reduce the complexity of the computational procedure, the properties of the extremum points of the optimality criterion established in the alternance method are used in the region of permissible values of variables. These properties allow creating a topology of this area and thereby minimizing the number of references to it during the search procedure. The proposed computational method is especially effective for non-convex and nonsmooth optimality criteria, to which the technologically sound statements of semiinfinite optimization result. A step-by-step algorithm for preparing data and performing calculations, suitable for implementation in most programming languages, has been developed. The efficiency of the algorithm, which is higher, the larger the number of parameters included in the control vector and the higher the dimension of the optimization domain, is investigated. An estimate of the computational complexity of the computational procedure of the alternance optimization method is proposed, which makes it possible to determine the effectiveness of the application of the proposed algorithm for solving the problem of optimal control of the technological control object.
Keywords: mathematical programming, nonconvex problem, optimal control, parameterization, search procedure.
@article{VSGTU_2019_23_2_a8,
     author = {M. Yu. Livshits and A. V. Nenashev},
     title = {Effective computational procedure of the alternance optimization method},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {361--377},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a8/}
}
TY  - JOUR
AU  - M. Yu. Livshits
AU  - A. V. Nenashev
TI  - Effective computational procedure of the alternance optimization method
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2019
SP  - 361
EP  - 377
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a8/
LA  - ru
ID  - VSGTU_2019_23_2_a8
ER  - 
%0 Journal Article
%A M. Yu. Livshits
%A A. V. Nenashev
%T Effective computational procedure of the alternance optimization method
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2019
%P 361-377
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a8/
%G ru
%F VSGTU_2019_23_2_a8
M. Yu. Livshits; A. V. Nenashev. Effective computational procedure of the alternance optimization method. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 2, pp. 361-377. http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a8/

[1] Rapoport E. Ya., Al'ternansnyi metod v prikladnykh zadachakh optimizatsii [The alternance method in applied problems of optimization], Nauka, Moscow, 2000, 335 pp. (In Russian) | Zbl

[2] Rapoport E. Ya., “Semi-infinite optimization of controlled systems under conditions of the bounded uncertainty”, Izvestia of Samara Scientific Center of the Russian Academy of Sciences, 2:1 (2000), 81–88 (In Russian)

[3] Livshits M. Yu., “System optimization of processes of heat and mass transfer of technological thermophysics”, Matem. Metody Tekhn. Tekhnol. — MMTT, 2016, no. 11(93), 104–114 (In Russian)

[4] Livshitc M. Yu., Yakubovich E. A., “Optimal Control of Technological Process of Carburization of Automotive Gears”, Materials Science Forum, 870 (2016), 647–653 | DOI

[5] Gorbunov V. K., “A method for the parametrization of optimal control problems”, U.S.S.R. Comput. Math. Math. Phys., 19:2 (1979), 18–30 | DOI | MR | Zbl

[6] Jongen H. T., Twilt F., Weber G. W., “Semi-infinite optimization: Structure and stability of the feasible set”, J. Optim. Theory Appl., 72:3 (1992), 529–452 | DOI | MR

[7] Felgenhauer U., “Structural properties and approximation of optimal controls”, Nonlinear Analysis, 47:3 (2001), 1869–1880 | DOI | MR | Zbl

[8] Polak E., Mayne D. Q., Stimler D. M., “Control system design via semi-infinite optimization: A review”, Proceedings of the IEEE, 72:12 (1984), 1777–1794 | DOI

[9] Semi-Infinite Programming and Applications, An International Symposium, Austin, Texas, September 8–10, 1981, Lecture Notes in Economics and Mathematical Systems, 215, eds. A. V. Fiacco, K. O. Kortanek, 1983, xi+324 pp. | DOI | MR | Zbl

[10] Polak E., “Semi-Infinite Optimization”, Optimization, Applied Mathematical Sciences, 124, Springer, New York, 1997, 368–481 | DOI

[11] Rapoport E. Ya., Pleshivtseva Yu. E., Optimal Control of Induction Heating Processes, Mechanical Engineering, CRC Press, New York, 2006, v+349 pp. | DOI

[12] Derevyanov M. Yu., Livshits M. Yu., Fedorchenko D. M., “Optimal control of vacuum cementation by energy efficiency criteria”, Omskii nauchnyi vestnik, 93:3 (2010), 169–173 (In Russian)

[13] Butkovskiy A. G., Teoriia optimal'nogo upravleniia sistemami s raspredelennymi parametrami [Theory of Optimal Control of Systems with Distributed Parameters], Nauka, Moscow, 1965, 474 pp. (In Russian) | Zbl

[14] Rapoport E. Ya., Mitroshin V. N., Kretov D. I., “Optimal control of the cooling process of polymer cable insulation when it is laid on an extrusion line”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2006, no. 43, 146–153 (In Russian) | DOI

[15] Livshitc M. Yu., Sizikov A. P., “Multi-Criteria Optimization of Refinery”, EPJ Web of Conferences, 110, Thermophysical Basis of Energy Technologies 2015 (2016), 01035 | DOI

[16] Warga J., Optimal control of differential and functional equations, Academic Press, New York, London, 1972, xiii+531 pp. | DOI | MR | Zbl

[17] Hartmann A. K., Rieger H., Optimization algorithms in physics, Wiley-VCH, Berlin, 2002, x+372 pp. | MR | Zbl

[18] Chichinadze V. K., “Solution of nonlinear nonconvex optimization problems by $\Psi$-transformation method”, Computers, Math. Applic., 21:6/7 (1991), 7–15 | DOI | MR | Zbl

[19] Spall J. C., Introduction to stochastic search and optimization. Estimation, simulation, and control, Wiley-Interscience Series in Discrete Mathematics and Optimization, 65, Wiley, New York, 2003, xx+595 pp. | DOI | MR | Zbl

[20] Handbook of simulation optimization, International Series in Operations Research and Management Science, ed. M. C. Fu, Springer, New York, 2015, xvi+387 pp. | DOI | MR | Zbl

[21] Rastrigin L. A., Statisticheskie metody poiska [Statistical search methods], Nauka, Moscow, 1968, 376 pp. (In Russian) | MR

[22] Nelder J. A., Mead R., “A simplex method for function minimization”, Comp. J., 7:4 (1965), 308–313 | DOI | MR | Zbl

[23] Gill P., Murray W., Wright M., Practical optimization, Academic Press, New York, 1981, xvi+401 pp. | MR | Zbl

[24] Samarskii A. A., Vvedenie v chislennye metody [An introduction to numerical methods], Nauka, Moscow, 1997, 240 pp. (In Russian) | Zbl

[25] Dem'yanov V. F., Rubinov A. M., Approximate methods in optimization problems, American Elsevier Publ. Comp., Inc., New York, 1970, ix+256 pp. | MR | Zbl

[26] Vasil'ev F. P., Chislennye metody resheniia ekstremal'nykh zadach [Numerical methods for the solution of extremal problems], Nauka, Moscow, 1980, 520 pp. (In Russian) | Zbl

[27] Di Loreto M., Damak S., Eberard D., Brun X., “Approximation of linear distributed parameter systems by delay systems”, Automatica, 62 (2016), 162–168 | DOI | MR

[28] Zakharova E. M., Minashina I. K., “Review of multidimensional optimization techniques”, Informatsionnye protsessy, 14:3 (2014), 256–274 (In Russian)

[29] Diligensky N. V., Efimov A P., “Solution of the non-differentiable optimization problem for an object with distributed parameters based on an approximate quasi-asymptotic model”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2011, no. 4(25), 118–124 (In Russian) | DOI

[30] Arora S., Barak B., Computational Complexity: A Modern Approach, Cambridge University Press, Cambridge, 2009, xxiv+579 pp. | DOI | MR | Zbl