Convective layered flows of a vertically whirling viscous incompressible fluid. Velocity field investigation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 2, pp. 341-360.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article discusses the solvability of an overdetermined system of heat convection equations in the Boussinesq approximation. The Oberbeck–Boussinesq system of equations, supplemented by an incompressibility equation, is overdetermined. The number of equations exceeds the number of unknown functions, since non-uniform layered flows of a viscous incompressible fluid are studied (one of the components of the velocity vector is identically zero). The solvability of the non-linear system of Oberbeck–Boussinesq equations is investigated. The solvability of the overdetermined system of non-linear Oberbeck–Boussinesq equations in partial derivatives is studied by constructing several particular exact solutions. A new class of exact solutions for describing three-dimensional non-linear layered flows of a vertical swirling viscous incompressible fluid is presented. The vertical component of vorticity in a non-rotating fluid is generated by a non-uniform velocity field at the lower boundary of an infinite horizontal fluid layer. Convection in a viscous incompressible fluid is induced by linear heat sources. The main attention is paid to the study of the properties of the flow velocity field. The dependence of the structure of this field on the magnitude of vertical twist is investigated. It is shown that, with nonzero vertical twist, one of the components of the velocity vector allows stratification into five zones through the thickness of the layer under study (four stagnant points). The analysis of the velocity field has shown that the kinetic energy of the fluid can twice take the zero value through the layer thickness.
Keywords: layered convection, tangential stress, counterflow, Oberbeck–Boussinesq equation system, vertical twist.
Mots-clés : exact solution, stagnation point, stratification
@article{VSGTU_2019_23_2_a7,
     author = {N. V. Burmasheva and E. Yu. Prosviryakov},
     title = {Convective layered flows of a vertically whirling viscous incompressible fluid. {Velocity} field investigation},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {341--360},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a7/}
}
TY  - JOUR
AU  - N. V. Burmasheva
AU  - E. Yu. Prosviryakov
TI  - Convective layered flows of a vertically whirling viscous incompressible fluid. Velocity field investigation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2019
SP  - 341
EP  - 360
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a7/
LA  - en
ID  - VSGTU_2019_23_2_a7
ER  - 
%0 Journal Article
%A N. V. Burmasheva
%A E. Yu. Prosviryakov
%T Convective layered flows of a vertically whirling viscous incompressible fluid. Velocity field investigation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2019
%P 341-360
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a7/
%G en
%F VSGTU_2019_23_2_a7
N. V. Burmasheva; E. Yu. Prosviryakov. Convective layered flows of a vertically whirling viscous incompressible fluid. Velocity field investigation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 2, pp. 341-360. http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a7/

[1] Navier C. L. M. H., “Mémoire sur les lois du mouvement des fluides”, Mémoires de l'Académie des sciences de l'Institut de France, 6 (1827), 389–416

[2] Kochin N. E., Kibel I. A., Roze N. V., Theoretical Hydromechanics, Wiley Interscience, New York, 1964, v+577 pp. | MR | Zbl

[3] Poisson S.-D., “Mémoire sur les équations générales de l'équilibre et du mouvement des corps solides élastiques et des fluides”, Journal de l'École Polytechnique, 13 (1831), 139–186

[4] de Saint-Venant B., “Note à joindre au Mémoire sur la dynamique des fluides”, Comptes rendus, 17 (1843), 1240–1244

[5] Stokes G. G., “On the theories of internal friction of fluids in motion, and of the equilibrium and motion of elastic solids”, Mathematical and Physical Papers, v. 1, Cambridge University Press, Cambridge, 2009, 75–129 ; From the Transactions of the Cambridge Philosophical Society, 8 (1880), 287–319 https://archive.org/details/transactionsofca08camb | DOI

[6] Landau L. D., Lifshits E. M., Course of Theoretical Physics, v. 6, Fluid Mechanics, Pergamon Press, New York, 1987, xiii+539 pp. | MR | Zbl

[7] Gershuni G. Z., Zhukhovitskii E. M., Convective Stability of Incompressible Fluids, Keter Publ. House, Jerusalem, 1976, 330 pp.

[8] Lin C. C., “Note on a class of exact solutions in magneto-hydrodynamics”, Arch. Ration. Mech. Anal., 1 (1858), 391–395 | MR | Zbl

[9] Drazin P. G., Introduction to hydrodynamic stability, Cambridge Texts in Applied Mathematics, Cambridge Univ. Press, Cambridge, 2002, xvii+258 pp | DOI | MR | Zbl

[10] Chandrasekhar S., Hydrodynamic and hydromagnetic stability, International Series of Monographs on Physics, Clarendon Press, Oxford, 1961, xix+652 pp. | MR | Zbl

[11] Falkovich G., Fluid mechanics. A short course for physicists, Cambridge Univ. Press, Cambridge, 2011, xii+167 pp | DOI | MR | Zbl

[12] Grigoreva P. M. , Vilchevskaya E. N., “Influence of diffusion models on chemical reaction front kinetics”, Diagnostics, Resource and Mechanics of materials and structures, 2018, no. 6, 59–82 (In Russian) | DOI

[13] Nefedova O. A., Vykhodets V. B., “A procedure for online investigation of deuterium diffusion in materials”, Diagnostics, Resource and Mechanics of materials and structures, 2018, no. 5, 57–63 (In Russian) | DOI

[14] Kazakov A. L., Spevak L. F., Nefedova O. A., “On the numerical-analytical approaches to solving a nonlinear heat conduction equation with a singularity”, Diagnostics, Resource and Mechanics of materials and structures, 2018, no. 6, 100-116 (In Russian) | DOI

[15] Litvinenko M. V., Litvinenko Yu. A., Kozlov G. V., Vohirev V. V., “Experimental investigation of a free round jet with Dean vortices”, Vestn. Novosib. Gos. Un-ta. Ser. Fizika, 9:2 (2014), 128–135 (In Russian)

[16] Shtertser A. A., Grinberg B. E., “Impact of a hydroabrasive jet on material: Hydroabrasive wear”, J. Appl. Mech. Tech. Phys., 54:2 (2013), 508–516 | DOI

[17] Malikov Z. M., Stasenko A. L., “Asymptotics of a submerged jet and transport processes in it”, Proceedings of Moscow Institute of Physics and Technology, 2013, no. 5(2), 59–68 (In Russian)

[18] Moshkin N. P., Fomina A. V., Chernykh G. G., “Numerical modelling of dynamics of turbulent wake behind towed body in the linearly stratified medium”, Matem. Mod., 19:1 (2007), 29–56 (In Russian) | MR | Zbl

[19] Ozmidov R. V., Nabatov V.N., “Hydrophysical model of a turbulent wake behind an underwater mountain”, Izv., Atmos. Ocean. Phys., 28:9 (1992), 981–987 (In Russian)

[20] Balandina G. N., Papko V. V., Sergeev D. A., Troitskaya Yu. I., “Evolution of the far turbulent wake behind a body towed in a stratified fluid with large Reynolds and Froude numbers”, Izv., Atmos. Ocean. Phys., 40:1 (2004), 99–113

[21] Fabrikant N. Ya., Aerodynamics, Nauka, Moscow, 1964, 816 pp. (In Russian)

[22] Kuznetsova Yu. L., Skulskiy O. I., “Influence of Flow Regimes on the Stratification of a Shear Fluid Flow with a Non-monotonic Flow Curve”, J. Appl. Mech. Tech. Phys., 2019, no. 1, 27–36 (In Russian) | DOI

[23] Georgievsky D. V., “Tensor-nonlinear shear flows: Material functions and the diffusion-vortex solutions”, Rus. J. Nonlin. Dyn., 7:2 (2011), 451–463 | DOI

[24] Georgievsky D. V., “Generalized Joseph estimates of stability of plane shear flows with scalar nonlinearity”, Bull. Russ. Acad. Sci. Phys., 75:1 (2011), 149–152 | DOI

[25] Lyapidevskiy V. Yu., “A mixing layer in a homogeneous fluid”, J. Appl. Mech. Tech. Phys., 41:4 (2000), 647–657 | DOI | MR

[26] Taylor G. I., “The transport of vorticity and heat through fluids in turbulent motion”, Proc. Roy. Soc. London. Ser. A., 135:828 (1932), 685–705 | DOI

[27] Pukhnachev V. V., “Exact solutions of the hydrodynamic equations derived from partially invariant solutions”, J. Appl. Mech. Tech. Phys., 44:3 (2003), 317–323 | DOI | MR | Zbl

[28] Aristov S. N., “A stationary cylindrical vortex in a viscous fluid”, Dokl. Phys., 46:4 (2001), 251–253 | DOI | MR

[29] Polyanin A. D., Aristov S. N., “Systems of hydrodynamic type equations: Exact solutions, transformations, and nonlinear stability”, Dokl. Phys., 54:9 (2009), 429–434 | DOI | MR | Zbl

[30] Burmasheva N. V., Prosviryakov E. Yu., “A large-scale layered stationary convection of a incompressible viscous fluid under the action of shear stresses at the upper boundary. Velocity field investigation”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:1 (2017), 180–196 (In Russian) | DOI | Zbl

[31] Burmasheva N. V., Prosviryakov E. Yu., “A large-scale layered stationary convection of a incompressible viscous fluid under the action of shear stresses at the upper boundary. Temperature and presure field investigation”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:4 (2017), 736–751 (In Russian) | DOI | Zbl

[32] Schwarz K. G., “Plane-parallel advective flow in a horizontal incompressible fluid layer with rigid boundaries”, Fluid Dyn., 49:4 (2014), 438–442 | DOI | MR | Zbl

[33] Knyazev D. V., “Two-dimensional flows of a viscous binary fluid between moving solid boundaries”, J. Appl. Mech. Tech. Phys., 52:2 (2011), 212–217 | DOI | MR | Zbl

[34] Sidorov A. F., “Two classes of solutions of the fluid and gas mechanics equations and their connection to traveling wave theory”, J. Appl. Mech. Tech. Phys., 30:2 (1989), 197–203 | DOI | MR

[35] Burmasheva N. V., Prosviryakov E. Yu., “Investigation of a velocity field for the Marangoni shear convection of a vertically swirling viscous incompressible fluid”, AIP Conference Proceedings, 2053 (2018), 040011, 040011-1–040011-5 | DOI

[36] Burmasheva N. V., Prosviryakov E. Yu., “Investigation of temperature and pressure fields for the Marangoni shear convection of a vertically swirling viscous incompressible fluid”, AIP Conference Proceedings, 2053 (2018), 040012, 040012-1–040012-6 | DOI

[37] Nikulin V. V., “Analytical model of motion of turbulent vortex rings in an incompressible fluid”, J. Appl. Mech. Techn. Phys., 55:4 (2014), 558-564 | DOI | MR | Zbl

[38] Aristov S. N., Prosviryakov E. Yu., “Stokes waves in vortical fluid”, Rus. J. Nonlin. Dyn., 10:3 (2014), 309–318 | DOI | Zbl

[39] Brutyan M. A., Kovalev V. E., “Vortex Flows of a Micropolar Fluid”, Uchenye zapiski TsAGI, 41:4 (2010), 52–61 (In Russian)

[40] Kovalev V. P., Sizykh G. B., “Axisymmetric Helical Flows of an Ideal Fluid”, Proceedings of Moscow Institute of Physics and Technology, 8:3 (2016), 171–179 (In Russian)

[41] Brutyan M. A., Krapivskiy P. L., “The exactsolution of the Navier-Stokes equations for the evolution of the vortex structure in a generalized shear-flow”, Comput. Math. Math. Phys., 32:2 (1992), 270–272 | MR | Zbl

[42] Grinspen Kh., Teoriya vraschayuschikhsya zhidkostey [Theory of Rotating Fluids], Gidrometeoizdat, Leningrad, 1975, 304 pp. (In Russian)

[43] Morozov K. I., “Rotation of a droplet in a viscous fluid”, J. Exp. Theor. Phys., 85:4 (1997), 728–733 | DOI

[44] Aristov S. N., Prosviryakov E. Yu., “Nonuniform convective Couette flow”, Fluid Dyn., 51:5 (2016), 581–587 | DOI | MR | Zbl

[45] Aristov S. N., Prosviryakov E. Yu., “A new class of exact solutions for three-dimensional thermal diffusion equations”, Theor. Found. Chem. Eng., 50:3 (2016), 286–293 | DOI

[46] Burmasheva N.V., Prosviryakov E. Yu., “Exact solution for the layered convection of a viscous incompressible fluid at specified temperature gradients and tangential forces on the free boundary”, AIP Conference Proceedings, 1915 (2017), UNSP 040005 | DOI

[47] Chikulaev D. G., Shvarts K. G., “Effect of rotation on the stability of advective flow in a horizontal liquid layer with solid boundaries at small Prandtl numbers”, Fluid Dyn., 50:2 (2015), 215–222 | DOI | MR | Zbl

[48] Knutova N. S., Shvarts K. G., “A study of behavior and stability of an advective thermocapillary flow in a weakly rotating liquid layer under microgravity”, Fluid Dyn., 50:3 (2015), 340–350 | DOI | MR | Zbl

[49] Ekman V. W., “On the influence of the Earth's rotation on ocean currents”, Ark. Mat. Astron. Fys., 2:11 (1905), 1–52 http://jhir.library.jhu.edu/handle/1774.2/33989 | Zbl

[50] Couette M., “Études sur le frottement des liquides”, Ann. Chim. Phys. Ser. 6, 21 (1890), 433–510 | Zbl

[51] Kovalev V. P., Prosviryakov E. Yu., Sizykh G. B., “Obtaining examples of exact solutions of the Navier–Stokes equations for helical flows by the method of summation of velocities”, Proceedings of Moscow Institute of Physics and Technology, 9:1 (2017), 71–88 (In Russian)

[52] Birikh R. V., “Thermocapillary convection in a horizontal layer of liquid”, J. Appl. Mech. Tech. Phys., 7:3 (1966), 43–44 | DOI

[53] Ostroumov G. A., Free convection under the condition of the internal problem, NACA Technical Memorandum, 1407, National Advisory Committee for Aeronautics, Washington, 1958, 239 pp. https://ntrs.nasa.gov/search.jsp?R=20030068786

[54] Berker R. A., Sur quelques cas d'intégration des équations du mouvement d'un fluide visqueux incompressible, Thèses de l'entre-deux-guerres, no. 185, 1936, 176 pp. http://www.numdam.org/item/THESE_1936__185__1_0/ | MR

[55] Aristov S. N., Prosviryakov E. Yu., “Unsteady layered vortical fluid flows”, Fluid Dyn., 51:2 (2016), 148–154 | DOI | MR | Zbl

[56] Aristov S. N., Prosviryakov E. Yu., “Large-scale flows of viscous incompressible vortical fluid”, Russian Aeronautics, 58:4 (2015), 413–418 | DOI

[57] Privalova V. V., Prosviryakov E. Yu., “Couette–Hiemenz exact solutions for the steady creeping convective flow of a viscous incompressible fluid, with allowance made for heat recovery”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:3 (2018), 532–548 | DOI | Zbl

[58] Prosviryakov E. Yu., “New class of exact solutions of Navier-Stokes equations with exponential dependence of velocity on two spatial coordinates”, Theor. Found. Chem. Eng., 53:1 (2019), 107–114 | DOI

[59] Aristov S. N., Prosviryakov E. Yu., “Inhomogeneous Couette flow”, Rus. J. Nonlin. Dyn., 10:2 (2014), 177–182 | DOI | Zbl

[60] Prosviryakov E. Yu., Spevak L. F., “Layered Three-Dimensional Nonuniform Viscous Incompressible Flows”, Theor. Found. Chem. Eng., 52:5 (2018), 765–770 | DOI

[61] Burmasheva N. V., Prosviryakov E. Yu., “Temperature field investigation in layered flows of a vertically swirling viscous incompressible fluid under two thermocapillar forces at a free boundary”, Diagnostics, Resource and Mechanics of materials and structures, 2019, no. 1, 6–42 (In Russian) | DOI