Analysis of the linear viscoelasticity theory capabilities to simulate hydrostatic pressure influence on creep curves and lateral contraction ratio of rheonomous materials
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 2, pp. 304-340.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Boltzmann–Volterra linear constitutive equation for isotropic non-aging visco-elastic materials is studied analytically in order to examine its capabilities to provide an adequate qualitative description of rheological phenomena related to creep under uni-axial loading combined with constant hydrostatic pressure and of evolution types of the Poisson's ratio (lateral contraction ratio) in creep. The constitutive equation does not involve the third invariants of stress and strain tensors and implies that their hydrostatic and deviatoric parts do not depend on each other. It is governed by two material functions of a positive real argument (that is shear and bulk creep compliances); they are implied to be positive, differentiable, increasing and convex up functions. General properties and characteristic features of the creep curves for volumetric, longitudinal and lateral strain produced by the linear theory (with an arbitrary shear and bulk creep functions) under constant tensile load and constant hydrostatic pressure are investigated. Conditions for creep curves monotonicity and for existence of extrema and sign changes of strains are studied. The Poisson's ratio evolution in time and its dependences on pressure and tensile stress levels and on qualitative characteristics of two creep functions are analyzed. Taking into account compressibility, volumetric creep and pressure influence (governed by the bulk creep function) affects strongly the qualitative behavior of longitudinal creep curves and the Poisson's ratio evolution and its range. In particular, it is proved that the linear theory can simulate non-monotone behavior and sign changes of lateral strain and Poisson’s ratio under constant tensile load (even if the pressure is zero) and the longitudinal strain may start to decrease provided the pressure level is high enough. The expressions for Poisson’s ratio via the strain triaxiality ratio (which is equal to volumetric strain divided by deviatoric strain) and in terms of pressure ratio to axial stress and the creep functions ratio are derived. Assuming creep functions are arbitrary (permissible), general accurate two-sided bounds for the Poisson's ratio range are obtained and the influence of pressure level on the range is studied. Additional restrictions on material functions and loading parameters are derived to provide negative values of Poisson’s ratio. Criteria for the Poisson’s ratio increase or decrease and for its non-dependence on time are found. The analysis revealed the set of immanent features and quantitative characteristics of the theoretic creep curves families and the Poisson's ratio dependence on time and pressure to axial stress ratio which are convenient to check in creep tests (with various levels of pressure and tensile stress) and can be employed as indicators of the linear viscoelasticity theory applicability (or non-applicability) for simulation of a material behavior. The specific properties and restrictions of the model with constant bulk creep compliance which simulates a material exhibiting purely elastic volumetric deformation are considered.
Keywords: viscoelasticity, volumetric creep, shear and bulk compliances, axial and lateral creep curves, lateral contraction ratio in creep, mean stress influence, indicators of linear range boundaries
Mots-clés : strain triaxiality ratio, negative Poisson’s ratio, identification.
@article{VSGTU_2019_23_2_a6,
     author = {A. V. Khokhlov},
     title = {Analysis of the linear viscoelasticity theory capabilities to simulate hydrostatic pressure influence on creep curves and lateral contraction ratio of rheonomous materials},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {304--340},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a6/}
}
TY  - JOUR
AU  - A. V. Khokhlov
TI  - Analysis of the linear viscoelasticity theory capabilities to simulate hydrostatic pressure influence on creep curves and lateral contraction ratio of rheonomous materials
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2019
SP  - 304
EP  - 340
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a6/
LA  - ru
ID  - VSGTU_2019_23_2_a6
ER  - 
%0 Journal Article
%A A. V. Khokhlov
%T Analysis of the linear viscoelasticity theory capabilities to simulate hydrostatic pressure influence on creep curves and lateral contraction ratio of rheonomous materials
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2019
%P 304-340
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a6/
%G ru
%F VSGTU_2019_23_2_a6
A. V. Khokhlov. Analysis of the linear viscoelasticity theory capabilities to simulate hydrostatic pressure influence on creep curves and lateral contraction ratio of rheonomous materials. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 2, pp. 304-340. http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a6/

[1] Beresnev B. I., Martynov E. D., Rodionov K. P., Plastichnost' i prochnost' tverdykh tel pri vysokikh davleniiakh [Plasticity and strength of solids under high pressures], Nauka, Moscow, 1970, 581 pp. (In Russian)

[2] Moskvitin V. V., Soprotivlenie viazkouprugikh materialov (primenitel'no k zariadam raketnykh dvigatelei na tverdom toplive) [Resistance of Viscoplastic Materials with Regard to Charges of Solid-Propellant Rocket Engines], Nauka, Moscow, 1972, 328 pp. (In Russian)

[3] Ainbinder S. B., Alksne K. I., Tyunina E. L., Laka M. G., Svoistva polimerov pri vysokikh davleniiakh [Properties of Polymers under High Pressures], Khimiia, M., 1973, 192 pp. (In Russian)

[4] Ainbinder S. B., Tyunina E. L., Tsirule K. I., Svoistva polimerov v razlichnykh napriazhennykh sostoianiiakh [Properties of Polymers in Various Stress States], Khimiia, M., 1981, 232 pp. (In Russian)

[5] Gol'dman A. Ya., Ob"emnaia deformatsiia plastmass [Volumetric Deformation of Plastics], Mashinostroenie, Leningrad, 1984, 232 pp. (In Russian)

[6] Gol'dman A. Ya., Prediction of the deformation properties of polymeric and composite materials, American Chemical Society, Washington, DC, 1994, xiii+349 pp.

[7] Mileiko S. T., “Creep and Creep Rupture”, Metal and ceramic based composites, Composite Materials Series, 12, Elsevier, Amsterdam, 1997, 307–332 | DOI

[8] Moshev V. V., Svistkov A. L., Garishin O. K. et al., Strukturnye mekhanizmy formirovaniia mekhanicheskikh svoistv zernistykh polimernykh kompozitov [Structural Mechanisms of the Mechanical Properties of Granular Polymer Composites], Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 1997, 508 pp. (In Russian)

[9] Glezer A. M., Permyakova I. E., Gromov V. E., Kovalenko V. V., Mekhanicheskoe povedenie amorfnykh splavov [Mechanical behavior of amorphous alloys], Siberian State Industrial Univ., Novokuznetsk, 2006, 416 pp. (In Russian)

[10] Valiev R. Z., Pushin V. G., “Bulk nanostructured metallic materials: Production, structure, properties, and functioning”, Physics of Metals and Metallography, 94 (2002), S1–S3

[11] Bazhenov S. L., Berlin A. A., Kul'kov A. A., Oshmyan V. G., Polimernye kompozitsionnye materialy. Prochnost' i tekhnologii [Polymer composite materials. Strength and technology], Intellekt, Moscow, 2009, 352 pp. (In Russian)

[12] Brekhova V. D., “Investigation of the Poisson's ratio of certain crystalline polymers under a constant compressive load”, Polymer Mechanics, 1:4, 23–24 | DOI

[13] Dzene I. Ya., Putans A. V., “Poisson's ratio of polyethylene in one-dimensional creep”, Polymer Mechanics, 3:5 (1967), 626–627 | DOI

[14] Laka M.G., Dzenis A. A., “Effect of hydrostatic pressure on the tensile strength of polymer materials”, Polymer Mechanics, 3:6 (1967), 685–687 | DOI

[15] Prosvirin V. I., Molchanov Yu. M., “Changes in the fine structure of polycaprolactam induced by hydrostatic pressure”, Polymer Mechanics, 4:4–6 (1968), 443–448 | DOI

[16] Pampillo C. A., Davis L. A., “Volume change during deformation and pressure dependence of yield stress”, J. Appl. Phys., 42:12 (1971), 4674–4679 | DOI

[17] Powers J. M., Caddell R. M., “The macroscopic volume changes of selected polymers subjected to uniform tensile deformation”, Polym. Eng. Sci., 12 (1972), 432–436

[18] Lokoshchenko A. M., Malinin N. I., Moskvitin V. V., Stroganov G. K., “Allowance for the effect of hydrostatic pressure in describing the nonlinear viscoelastic properties of high-density polyethylene”, Polymer Mechanics, 10:6 (1974), 859–863 | DOI

[19] Dzene I. Ya., Kregers A. F., Vilks U. K., “Characteristic features of the deformation process on creep and secondary creep of polymers under conditions of monaxial tensioning. Part I”, Polymer Mechanics, 10:3 (1974), 337–342 | DOI

[20] Ol'khovik O. E., Gol'dman A. Ya., “Creep of fluoroplastic under the joint action of tension and hydrostatic pressure”, Polymer Mechanics, 13:3 (1977), 370–374 | DOI

[21] Ol'khovik O. E., Gol'dman A. Ya., “Creep of fluoroplastic in shear with application of hydrostatic pressure”, Polymer Mechanics, 13:5 (1977), 679–684 | DOI

[22] Gol'dman A. Ya., Tsygankov S. A., “Prediction of the creep of polymeric materials for a complex stress state”, Polymer Mechanics, 16:6 (1980), 729–733 | DOI

[23] Ol'khovik O. E., Baranov V.G., “The effects of temperature, pressure and volume on the stress relaxation properties of low density polyethylene (LDPE)”, Polymer Science U.S.S.R., 23:7 (1981), 1593–1602 | DOI

[24] Shcherbak V. V., Gol'dman A. Ya., “Volume changes in dispersely filled composites under creep tests”, Mekh. Kompozit. Mater., 1982, no. 3, 549–552 (In Russian)

[25] Kalinnikov A. E., Vakhrushev A. V., “On a ratio between lateral and longitudinal strains in heteroresistant materials under uniaxial creep conditions”, Mekh. Kompozit. Mater., 1985, no. 2, 351–354 (In Russian)

[26] Knauss W. G., Emri I., “Volume change and the nonlinearly thermoviscoelastic constitution of polymers”, Polym. Eng. Sci., 27:1 (1987), 86–100 | DOI

[27] Naqui S. I., Robinson I. M., “Tensile dilatometric studies of deformation in polymeric materials and their composites”, J. Mater. Sci., 28:6 (1993), 1421–1429 | DOI

[28] Delin M., Rychwalski R. W., Kubát J., Kubát M. J., Bertilsson H., Klason C., “Volume changes during flow of solid polymers”, J. Non-Cryst. Solids, 172–174 (1994), 779–785 | DOI

[29] Delin M., Rychwalski R., Kubát J., “Volume changes during stress relaxation in polyethylene”, Rheol. Acta, 34:2 (1995), 182–195 | DOI

[30] Tschoegl N. W., “Time Dependence in Material Properties: An Overview”, Mech. Time-Depend. Mater., 1:1 (1997), 3–31 | DOI

[31] Özüpek S., Becker E. B., “Constitutive Equations for Solid Propellants”, J. Engng Mater. Technol., 119:2 (1997), 125–132 | DOI

[32] Hilton H. H., “Implications and constraints of time-independent Poisson's Ratios in linear isotropic and anisotropic viscoelasticity”, J. Elasticity, 63:3 (2001), 221–251 | DOI | MR | Zbl

[33] Tschoegl N. W., Knauss W. G., Emri I., “Poisson's ratio in linear viscoelasticity – a critical review”, Mech. Time-Depend. Mater., 6:1 (2002), 3–51 | DOI

[34] Arzoumanidis G. A., Liechti K. M., “Linear viscoelastic property measurement and its significance for some nonlinear viscoelasticity models”, Mech. Time-Depend. Mater., 7:3 (2003), 209–250 | DOI

[35] Cangemi L., Elkoun S., G'Sell C., Meimon Y., “Volume strain changes of plasticized Poly(vinylidene fluoride) during tensile and creep tests”, J. Appl. Polym. Sci., 91:3 (2004), 1784–1791 | DOI

[36] Addiego F., Dahoun A., G'Sell C., Hiver J. M., “Volume Variation Process of High-Density Polyethylene During Tensile and Creep Tests”, Oil Gas Science and Technology – Rev. IFP, 61:6 (2006), 715–724 | DOI

[37] Lomakin E. V., “Mechanics of media with stress-state dependent properties”, Phys. Mesomech., 10:5–6 (2007), 255–264 | DOI

[38] Savinykh A. S., Garkushin G. V., Razorenov S. V., Kanel G. I., “Longitudinal and bulk compressibility of soda-lime glass at pressures to 10 GPa”, Tech. Phys., 52:3 (2007), 328–332 | DOI

[39] Pandini S., Pegoretti A., “Time, temperature, and strain effects on viscoelastic Poisson's ratio of epoxy resins”, Polym. Eng. Sci., 48:7 (2008), 1434–1441 | DOI

[40] Bykov D. L., Peleshko V. A., “Constitutive relations for strain and failure of filled polymer materials in dominant axial tension processes under various barothermal conditions”, Mech. Solids, 43:6 (2008), 870–891 | DOI

[41] Shekhar H., Sahasrabudhe A. D., “Longitudinal Strain Dependent Variation of Poissons Ratio for HTPB Based Solid Rocket Propellants in Uni-axial Tensile Testing”, Prop., Explos., Pyrotech., 36:6 (2011), 558–563 | DOI

[42] Tscharnuter D., Jerabek M., Major Z., Lang R. W., “Time-dependent Poisson's ratio of polypropylene compounds for various strain histories”, Mech. Time-Depend. Mater., 15:1 (2011), 15–28 | DOI

[43] Grassia L., D'Amore A., Simon S. L., “On the Viscoelastic Poisson's Ratio in Amorphous Polymers”, Journal of Rheology, 54:5 (2010), 1009–1022 | DOI

[44] Cui H. R., Tang G. J., Shen Z. B., “Study on viscoelastic Poisson's ratio of solid propellants using digital image correlation method”, Prop., Explos., Pyrotech., 41:5 (2016), 835–84 | DOI

[45] Lakes R., “Foam structure with a negative Poisson's ratio”, Science, 235:4792 (1987), 1038–1040 | DOI

[46] Friis E. A., Lakes R. S., Park J. B., “Negative Poisson's ratio polymeric and metallic materials”, J. Mater. Sci., 23:12 (1988), 4406–4414 | DOI

[47] Berlin A. A., Rothenburg L., Bathurst R., “Peculiarities of deformation of disordered polymeric and nonpolymeric bodies”, Polymer Science A, 34:7 (1992), 559–573

[48] Milton G. W., “Composite materials with Poisson's ratios close to $-1$”, J. Mech. Phys. Solids, 40:5 (1992), 1105–1137 | DOI | MR | Zbl

[49] Lakes R. S., Elms K., “Indentability of conventional and negative Poisson's ratio foams”, J. Compos. Mater., 27:12 (1993), 1193–1202 | DOI

[50] Caddock B. D., Evans K. E., “Negative Poisson ratios and strain-dependent mechanical properties in arterial prostheses”, Biomaterials, 16:14 (1995), 1109–1115 | DOI

[51] Chan N., Evans K. E., “Indentation resilience of conventional and auxetic foams”, J. Cell. Plastics, 34:3 (1998), 231–260 | DOI

[52] Alderson K. L., Fitzgerald A., Evans K. E., “The strain dependent indentation resilience of auxetic microporous polyethylene”, J. Mater. Sci., 35:16 (2000), 4039–4047 | DOI

[53] Konyek D. A., Wojciechowski K. V., Pleskachevsky Yu. M., Shil'ko S. V., “Materials with negative Poisson's ratio (review)”, Mechanics of Composite Materials and Structures, 10:1 (2004), 35–69 (In Russian)

[54] Greer A. L., Lakes R. S., Rouxel T., Greaves G. N., “Poisson's ratio and modern materials”, Nature Materials, 10:11 (2011), 823–837 | DOI

[55] Khokhlov A. V., “Simulation of hydrostatic pressure influence on creep curves and Poisson's ratio of rheonomic materials under tension using the Rabotnov non-linear hereditary relation”, Mechanics of Composite Materials and Structures, 24:3 (2018), 407–436 (In Russian) | DOI

[56] Golub V. P., “Investigations into cyclic creep of materials (review)”, Soviet Applied Mechanics, 23:12 (1987), 1107–1121 | DOI | Zbl

[57] Krempl E., Khan F., “Rate (time)-dependent deformation behavior: an overview of some properties of metals and solid polymers”, Int. J. Plasticity, 19:7 (2003), 1069–1095 | DOI | Zbl

[58] Knauss W. G., Emri I., Lu H., “Mechanics of Polymers: Viscoelasticity”, Springer Handbook of Experimental Solid Mechanics, ed. W. N. Sharpe, Springer, Boston, MA, 2008, 49–96 | DOI

[59] Khan F., Yeakle C., “Experimental investigation and modeling of non-monotonic creep behavior in polymers”, Int. J. Plasticity, 27:4 (2011), 512–521 | DOI | Zbl

[60] Drozdov A. D., “Time-dependent response of polypropylene after strain reversal”, Int. J. Solids Struct., 47:24 (2010), 3221–3233 | DOI | Zbl

[61] Kästner M., Obst M., Brummund J., Thielsch K., Ulbricht V., “Inelastic material behavior of polymers – Experimental characterization, formulation and implementation of a material model”, Mech. Mat., 52 (2012), 40–57 | DOI

[62] Fernandes V. A., De Focatiis D. S., “The role of deformation history on stress relaxation and stress memory of filled rubber”, Polymer Testing, 40 (2014), 124–132 | DOI

[63] Drozdov A. D., Dusunceli N., “Unusual mechanical response of carbon black-filled thermoplastic elastomers”, Mech. Mat., 69:1 (2014), 116–131 | DOI

[64] Khokhlov A. V., “Long-term strength curves Produced by Linear Viscoelasticity Theory combined with failure criteria accounting for strain history”, Tudy MAI, 2016, no. 91, 1–32 (In Russian)

[65] Khokhlov A. V., “Analysis of creep curves produced by the linear viscoelasticity theory under cyclic stepwise loadings”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:2 (2017), 326–361 (In Russian) | DOI | Zbl

[66] Khokhlov A. V., “Analysis of properties of creep curves generated by the linear viscoelasticity theory under arbitrary loading programs at initial stage”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:1 (2018), 65–95 (In Russian) | DOI | Zbl

[67] Khokhlov A. V., “Two-Sided Estimates for the Relaxation Function of the Linear Theory of Heredity via the Relaxation Curves during the Ramp-Deformation and the Methodology of Identification”, Mech. Solids, 53:3 (2018), 307–328 | DOI | DOI

[68] Khokhlov A. V., “Analysis of Creep Curves General Properties under Step Loading Generated by the Rabotnov Nonlinear Relation for Viscoelastic Plastic Materials”, Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2017, no. 3, 93–123 (In Russian) | DOI

[69] Khokhlov A. V., “Analysis of Properties of Ramp Stress Relaxation Curves Produced by the Rabotnov Nonlinear Hereditary Theory”, Mech. Compos. Mater., 54:4 (2018), 473–486 | DOI

[70] Khokhlov A. V., “Comparative Analysis of Creep Curves Properties Generated by Linear and Nonlinear Heredity Theories under Multi-Step Loadings”, Mathematical Physics and Computer Simulation, 21:2 (2018), 27–51 (In Russian) | DOI | MR

[71] Khokhlov A. V., “Properties of the family of deformation diagrams generated by the non-linear Rabotnov relation for viscoelastoplastic materials”, Izv. RAN. MTT, 2019, no. 2, 29–47 (In Russian) | DOI

[72] Ferry J. D., Viscoelastic Properties of Polymers, Wiley, New York, 1961, xx+482 pp.

[73] Il'yushin A. A., Pobedrya B. E., Osnovy matematicheskoi teorii termoviazkouprugosti [Fundamentals of the Mathematical Theory of Thermoviscoelasticity], Nauka, Moscow, 1970, 280 pp. (In Russian) | MR

[74] Christensen R. M., Theory of Viscoelasticity. An Introduction, Academic Press, New York, 1982, xii+364 pp. | DOI

[75] Bugakov I. I., Polzuchest' polimernykh materialov [Creep of Polymer Materials], Nauka, Moscow, 1973, 287 pp. (In Russian)

[76] Rabotnov Yu. N., Elements of hereditary solid mechanics, Mir Publ., Moscow, 1980, 388 pp. | MR | Zbl

[77] Vinogradov G. V., Malkin A. Ya., Reologiia polimerov [Rheology of Polymers], Khimiia, Moscow, 1977, 440 pp.

[78] Malkin A. Ya., Mansurov V. A., Begishev V. P., “Method of measuring the relaxational properties of elastomers during network formation”, Polymer Science U.S.S.R., 29:3 (1987), 741–745 | DOI

[79] Tschoegl N. W., The phenomenological theory of linear viscoelastic behavior. An introduction, Springer-Verlag, Berlin, 1989, xxv+769 pp. | MR | Zbl

[80] Drozdov A. D., Mechanics of viscoelastic solids, John Wiley Sons, Chichester, 1998, xii+472 pp. | Zbl

[81] Adamov A. A., Matveenko V. P., Trufanov N. A., Shardakov I. N., Metody prikladnoi viazkouprugosti [Methods of Applied Viscoelasticity], Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 2003, 411 pp. (In Russian)

[82] Brinson H. F., Brinson L. C., Polymer Engineering Science and Viscoelasticity, Springer, Boston, MA, 2008, xvi+446 pp. | DOI

[83] Lakes R. S., Viscoelastic Materials, Cambridge Univ. Press, Cambridge, 2009, xvi+461 pp. | DOI

[84] Mainardi F., Fractional calculus and waves in linear viscoelasticity. An introduction to mathematical models, World Scientific, Hackensack, NJ, 2010, xx+347 pp. | DOI | MR | Zbl

[85] Christensen R. M., Mechanics of Composite Materials, Dover Publ., New York, 2012, 384 pp.

[86] Bergström J., Mechanics of Solid Polymers. Theory and Computational Modeling, Elsevier; William Andrew, New York, 2015, 520 pp. | DOI | MR

[87] Georgievskii D. V., Klimov D. M., Pobedrya B. E., “Specific features of the behavior of viscoelastic models”, Mech. Solids., 39:1 (2004), 88–120

[88] Lomakin V. A., Koltunov M. A., “Simulation of the deformation processes of nonlinear viscoelastic media”, Polymer Mechanics, 3:2 (1967), 147–150 | DOI

[89] Rabotnov Yu. N., “The equilibrium of an elastic medium with after-effect”, Prikl. Mat. Meh., 12:1, 53–62 (In Russian) | MR | Zbl

[90] Rabotnov Yu. N., Creep problems in structural members, North-Holland series in applied mathematics and mechanics, 7, North-Holland, Amsterdam, 1969, xiv+822 pp. | Zbl

[91] Khokhlov A. V., “On ability of nonlinear Maxwell-type elasto-viscoplastic model to simulate sign-alternation and non-monotonicity of time dependence of the Poisson ratio under creep conditions”, Deformation and Fracture of Materials, 2019:3 (2019), 16–24 (In Russian) | DOI