Estimation of mechanical characteristics of salt rock crystals based on the mathematical model of nanoindentation using scanning probe microscope Dimension Icon
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 2, pp. 256-269.

Voir la notice de l'article provenant de la source Math-Net.Ru

The scanning probe microscope Dimension Icon is used both to assess the relief of the sample surface and to obtain the force response of the sample during the interaction of the cantilever (indenter of special shape, located at the end of the elastic console) with the sample surface. At the same time, unlike other devices, such as NanoTest-600, where as a result of indentation the researcher receives the value of hardness and effective modulus of elasticity with the help of software connected with this device. Dimension Icon gives only the dependence of indenter deviation on the displacement of the cantilever base. For the known flexural stiffness of the elastic console, one can determine the force-displacement curve during loading and unloading. Then here comes the problem of interpretation of this curve: how can we evaluate the mechanical characteristics of the material on its basis? The answer to this question particularly depends on the character of the mechanical behavior of the material. We consider the two-dimensional axisymmetric problem of sample indentation at the stages of loading and unloading for the range of indentation depths significantly exceeding the head spherical part of the cantilever probe, under the assumption of elastic-perfectly-plastic material model. Numerical simulation is carried out in the ANSYS package within the framework of the contact problem, under the assumption of an absolutely rigid cantilever tip. We propose the method for estimating the yield stress and the modulus of elasticity of the sample surface layers and determine the values of mechanical characteristics for several salt rock crystals by processing the results of the computational experiment and the data of previous experiments.
Keywords: nanoindentation, modeling, salt rocks, mechanical characteristics.
@article{VSGTU_2019_23_2_a3,
     author = {V. N. Aptukov and V. Yu. Mitin},
     title = {Estimation of mechanical characteristics of salt rock crystals based on the mathematical model of nanoindentation using scanning probe microscope {Dimension} {Icon}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {256--269},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a3/}
}
TY  - JOUR
AU  - V. N. Aptukov
AU  - V. Yu. Mitin
TI  - Estimation of mechanical characteristics of salt rock crystals based on the mathematical model of nanoindentation using scanning probe microscope Dimension Icon
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2019
SP  - 256
EP  - 269
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a3/
LA  - ru
ID  - VSGTU_2019_23_2_a3
ER  - 
%0 Journal Article
%A V. N. Aptukov
%A V. Yu. Mitin
%T Estimation of mechanical characteristics of salt rock crystals based on the mathematical model of nanoindentation using scanning probe microscope Dimension Icon
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2019
%P 256-269
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a3/
%G ru
%F VSGTU_2019_23_2_a3
V. N. Aptukov; V. Yu. Mitin. Estimation of mechanical characteristics of salt rock crystals based on the mathematical model of nanoindentation using scanning probe microscope Dimension Icon. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 2, pp. 256-269. http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a3/

[1] Baryakh A. A., Konstantinova S.A., Asanov V. A., Deformirovanie solianykh porod [Deformation of Salt Rocks], UrO RAN, Ekaterinburg, 1966, 203 pp. (In Russian)

[2] Konstantinova S. A., Chernopazov S. A., “Development of hereditary model for deformation and failure of salt rocks”, J. Min. Sci., 40:1 (2004), 45–56 | DOI

[3] Konstantinova S. A., Aptukov V. N., Nekotorye zadachi mekhaniki deformirovaniia i razrusheniia solianykh porod [Some problems of mechanics of deformation and failure of salt rocks], Nauka, Novosibirsk, 2013, 192 pp. (In Russian)

[4] Soloviev V. A., Aptukov V. N., Vaulina I. B., Podderzhanie gornykh vyrabotok v porodakh solenosnoi tolshchi: teoriia i praktika, Nauka, Novosibirsk, 2017, 264 pp. (In Russian)

[5] Stavrogin A. N., Protosenya A. G., Mekhanika deformirovaniia i razrusheniia gornykh porod [Mechanics of Rock Deformation and Failure], Nedra, Moscow, 1992, 264 pp. (In Russian)

[6] Kartashov Yu. M., Matveev B. V, Mikheev G. V, Fadeev A. B., Prochnost' i deformiruemost' gornykh porod [Strength and Deformability of Mountain Rocks], Nedra, Moscow, 1979, 269 pp. (In Russian)

[7] Zil'bershmidt V. G., Zil'bershmidt V. V., Naimark O. B., Razrushenie solianykh porod rm [Salt Rock Failure], Nauka, Moscow, 1992, 144 pp. (In Russian)

[8] Proskuriakov N. M., Permiakov R. S., Chernikov A. K., Fiziko-mekhanicheskie svoistva solianykh porod rm [Physical and mechanical properties of salt rocks], Nedra, Leningrad, 1973, 272 pp. (In Russian)

[9] Suslov A. A., Chizhik S. A., “Scanning probe microscopes (a review)”, Materialy. Technologii. Instrumenty, 1997, no. 3, 78–89 (In Russian)

[10] Mironov V. L., Fundamentals of scanning probe microscopy, Nizhniy Novgorod, 2004, 97 pp. http://ipmras.ru/~Mironov/SPM_textbook.html

[11] Sarid D., Scanning force microscopy with applications to electric, magnetic and atomic forces, Oxford University Press, New York, 1994

[12] Oliver W. C., Pharr G. M., “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, J. Mater. Res., 7:6 (1992), 1564–1583 | DOI

[13] Oliver W. C., Pharr G. M., “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology”, J. Mater. Res., 19:1 (2004), 3–20 | DOI

[14] Fischer-Cripps A. C., Nanoindentation, Mechanical Engineering Series, Springer-Verlag, New York, 2004, xxii+264 pp | DOI

[15] Aptukov V. N., Mitin V. Yu., “Fractal and mechanical micro- and nanorange properties of sylvite and halite crystals”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:3 (2017), 481–495 (In Russian) | DOI | Zbl

[16] Menčík J. A., Munz D., Quandt E., Weppelman R., “Determination of elastic modulus of thin layers using nanoindentation”, Meccanica, 42:1 (2007), 19–29 | DOI | Zbl

[17] Sun Y., Zheng S., Bell T., “Indenter tip radius and load frame compliance calibration using nanoindentation load curves”, Philosophical Magazine Letter, 79:9 (2007), 649–658 | DOI

[18] Panich N., Yong S., “Improved method to determine the hardness and elastic moduli using nano-indentation”, KMITL Science Journal, 5:2 (2005), 483–492

[19] Golovin Yu. I., “Nanoindentation as a tool for the integrated estimation of the physicomechanical properties of materials in submicrovolumes: A review”, Zavod. Lab., Diagn. Mater. [Industrial laboratory. Diagnostics of materials], 2009, no. 1, 45–59 (In Russian)

[20] Garishin O. K., “Modeling of interaction between the atomic-force microscope probe and a polymer surface with van der Waals forces and surface tension taken into account”, Nanosist. Fiz., Khim., Mat., 2:3 (2012), 47–54 (In Russian)

[21] Morozov I. A., Uzhegova N. I., “Determination of mechanical properties of materials in terms of models of interaction between AFM probe and sample surface”, Computational Continuum Mechanics, 7:4 (2014), 385–397 (In Russian) | DOI

[22] Sedov L. I., Similarity and dimensionality methods in mechanics, Academic Press, New York, London, 1959 | DOI | Zbl

[23] Aptukov V. N., Konstantinova S. A., Mitin V. Y., Skachkov A. P., “Nano- and micro-range mechanical characteristics of sylvite grain”, J. Min. Sci., 48:3 (2013), 429–435 | DOI

[24] Aptukov V. N., Konstantinova S. A., Skachkov A. P., “Micromechanical Characteristics of Karnallite, Sylvinite and Rock Salt at Upper Kama Deposit”, J. Min. Sci., 46:4 (2010), 352–358 | DOI

[25] Aptukov V. N., Mitin V. Y., “Nanorange mechanical and fractal properties of rock salt crystal surface and their effect on fracture toughness and wettability”, J. Min. Sci., 52:4 (2016), 638–646 | DOI