Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2019_23_2_a10, author = {L. L. Ryskina}, title = {On singular solutions of a multidimensional differential}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {394--401}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a10/} }
TY - JOUR AU - L. L. Ryskina TI - On singular solutions of a multidimensional differential JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2019 SP - 394 EP - 401 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a10/ LA - ru ID - VSGTU_2019_23_2_a10 ER -
%0 Journal Article %A L. L. Ryskina %T On singular solutions of a multidimensional differential %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2019 %P 394-401 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a10/ %G ru %F VSGTU_2019_23_2_a10
L. L. Ryskina. On singular solutions of a multidimensional differential. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 2, pp. 394-401. http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a10/
[1] Clairaut A., “Solution de plusieurs problèmes où il s'agit de trouver des Courbes dont la propriété consiste dans une certaine relation entre leurs branches, exprimée par une Équation donnée”, Histoire Acad. R. Sci. Paris (1734), 1736, 196–215 https://gallica.bnf.fr/ark:/12148/bpt6k3531x/f344.table
[2] El'sgol'ts L. E., Differentsial'nye uravneniia i variatsionnoe ischislenie [Differential equations and calculus of variations], Nauka, Moscow, 1969, 424 pp. (In Russian)
[3] Kamke E., Differentialgleichungen. Lösungsmethoden und Lösungen, v. I, Gewöhnliche Differentialgleichungen, B.G. Teubner, Stuttgart, 1977, xxvi+668 pp. (In German) | MR | Zbl
[4] Courant R., Hilbert D., Methods of mathematical physics, v. 2, Partial differential equations, John Wiley Sons, New York, London, 1962, xxii+830 pp. | MR | Zbl
[5] Lavrov P. M., Merzlikin B. S., “Loop expansion of the average effective action in the functional renormalization group approach”, Phys. Rev. D, 92:8 (2015), 085038, arXiv: [hep-th] 1506.04491 | DOI | MR
[6] Lavrov P. M., Merzlikin B. S., “Legendre transformations and Clairaut-type equations”, Phys. Lett. B, 756 (2016), 188–193, arXiv: [hep-th] 1602.04911 | DOI | Zbl
[7] Walker M., Duplij S., “Cho-Duan-Ge decomposition of QCD in the constraintless Clairaut-type formalism”, Phys. Rev. D, 91:6 (2015), 064022, arXiv: [hep-th] 1411.6968 | DOI
[8] Duplij S., “A new Hamiltonian formalism for singular Lagrangian theories”, Journal of Kharkov National University, Ser. Nuclei, Particles and Fields, 969:3 (2011), 34–39, arXiv: 0909.2695 [math-ph]
[9] Zyryanova O. V., Mudruk V. I., “Singular Solutions of Clairaut Equations”, Russ. Phys. J., 61:4 (2018), 635–642 | DOI | Zbl
[10] Rakhmelevich I. V., “On the Solutions of Multi-dimensional Clairaut Equation with Multi-homogeneous Function of the Derivatives”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 14:4(1) (2014), 374–381 (In Russian) | Zbl