Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2019_23_2_a1, author = {L. S. Pulkina and V. A. Kirichek}, title = {Solvability of a nonlocal problem for a hyperbolic equation with degenerate integral conditions}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {229--245}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a1/} }
TY - JOUR AU - L. S. Pulkina AU - V. A. Kirichek TI - Solvability of a nonlocal problem for a hyperbolic equation with degenerate integral conditions JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2019 SP - 229 EP - 245 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a1/ LA - ru ID - VSGTU_2019_23_2_a1 ER -
%0 Journal Article %A L. S. Pulkina %A V. A. Kirichek %T Solvability of a nonlocal problem for a hyperbolic equation with degenerate integral conditions %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2019 %P 229-245 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a1/ %G ru %F VSGTU_2019_23_2_a1
L. S. Pulkina; V. A. Kirichek. Solvability of a nonlocal problem for a hyperbolic equation with degenerate integral conditions. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 2, pp. 229-245. http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a1/
[1] Cannon J. R., “The solution of the heat equation subject to the specification of energy”, Quart. Appl. Math., 21:2 (1963), 155–160 | DOI | MR
[2] Kamynin L. I, “A boundary value problem in the theory of heat conduction with a nonclassical boundary condition”, U.S.S.R. Comput. Math. Math. Phys., 4:6 (1964), 33–59 | DOI | MR | MR | Zbl
[3] Bažant Z. P., Jirásek M., “Nonlocal integral formulations of plasticity and damage: Survey of progress”, Journal of Engineering Mechanics, 128:11 (2002), 1119–1149 | DOI
[4] Gordeziani D. G., Avalishvili G. A., “On the constructing of solutions of the nonlocal initial boundary value problems for one-dimensional medium oscillation equations”, Matem. Mod., 12:1 (2000), 94–103 (In Russian) | MR | Zbl
[5] Il'in V. A., Moiseev E. I., “Uniqueness of the solution of a mixed problem for the wave equation with nonlocal boundary conditions”, Differ. Equ., 36:5 (2000), 728–733 | DOI | MR | Zbl
[6] Lažetić N. L., “On the classical solvability of the mixed problem for a second-order one-dimensional hyperbolic equation”, Differ. Equ., 42:8 (2006), 1134–1139 | DOI | MR
[7] Pulkina L. S., “A mixed problem with integral condition for the hyperbolic equation”, Math. Notes, 74:3 (2003), 411–421 | DOI | DOI | MR | Zbl
[8] Pulkina L. S., “Initial-boundary value problem with a nonlocal boundary condition for a multidimensional hyperbolic equation”, Differ. Equ., 44:8 (2008), 1119–1125 | DOI | MR | Zbl
[9] Avalishvili G., Avalishvili M., Gordeziani D., “On integral nonlocal boundary value problems for some partial differential equations”, Bull. Georg. Natl. Acad. Sci., 5:1 (2011), 31–37 https://pdfs.semanticscholar.org/1550/b5c86206fec72ec1eb7bc2c38962d8371327.pdf | Zbl
[10] KozhanovL A. I., Pulkina L. S., “On the solvability of boundary value problems with a nonlocal boundary condition of integral form for multidimensional hyperbolic equations”, Differ. Equ., 42:9 (2006), 1233–1246 | DOI | MR | Zbl
[11] Pulkina L. S., “Nonlocal problems for hyperbolic equations with degenerate integral condition”, Electronic Journal of Differential Equations, 2016:193 (2016), 1–12 https://ejde.math.txstate.edu/Volumes/2016/193/pulkina.pdf | MR
[12] Pulkina L. S., “Boundary-value problems for a hyperbolic equation with nonlocal conditions of the I and II kind”, Russian Math. (Iz. VUZ), 56:4 (2012), 62–69 | DOI | MR | Zbl
[13] Pulkina L. S., Zadachi s neklassicheskimi usloviiami dlia giperbolicheskikh uravnenii [Problems with nonclassical conditions for hyperbolic equatins], Samara University, Samara, 2012, 194 pp. (In Russian)
[14] Ladyzhenskaya O.A., Boundary problems of mathematical physics, Nauka, Moscow, 1975, 407 pp. (In Russian)
[15] Pulkina L. S., “A problem with dynamic nonlocal condition for pseudohyperbolic equation”, Russian Math. (Iz. VUZ), 60:9 (2016), 38–45 | DOI | MR | Zbl