Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2019_23_2_a0, author = {L. N. Krivonosov and V. A. Lukyanov}, title = {Duality equations on a 4-manifold of conformal torsion-free connection and some of their solutions for the zero signature}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {207--228}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a0/} }
TY - JOUR AU - L. N. Krivonosov AU - V. A. Lukyanov TI - Duality equations on a 4-manifold of conformal torsion-free connection and some of their solutions for the zero signature JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2019 SP - 207 EP - 228 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a0/ LA - ru ID - VSGTU_2019_23_2_a0 ER -
%0 Journal Article %A L. N. Krivonosov %A V. A. Lukyanov %T Duality equations on a 4-manifold of conformal torsion-free connection and some of their solutions for the zero signature %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2019 %P 207-228 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a0/ %G ru %F VSGTU_2019_23_2_a0
L. N. Krivonosov; V. A. Lukyanov. Duality equations on a 4-manifold of conformal torsion-free connection and some of their solutions for the zero signature. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 2, pp. 207-228. http://geodesic.mathdoc.fr/item/VSGTU_2019_23_2_a0/
[1] Luk'yanov V. A., Krivonosov L. N., “Yang–Mills equations on conformally connected torsion-free 4-manifolds with different signatures”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:4 (2017), 633–650 (In Russian) | DOI | Zbl
[2] Akivis M. A., Konnov V. V., “Some local aspects of the theory of conformal structure”, Russian Math. Surveys, 48:1 (1993), 1–35 | DOI | MR | Zbl
[3] Akivis M. A., “On completely isotropic submanifolds of a four-dimensional pseudoconformal structure”, Soviet Math. (Iz. VUZ), 27:1 (1983), 1–11 | MR | Zbl | Zbl
[4] Konnov V. V., “The asymptotic pseudoconformal structure on a four-dimensional hypersurface and its totally isotropic two-dimensional submanifolds”, Russian Math. (Iz. VUZ), 36:6 (1992), 67–74 | MR | Zbl
[5] Cartan É., “Les espaces à connexion conforme”, Ann. Soc. Pol. Math., 2 (1923), 171–221
[6] Kobayashi Sh., “Automorphisms of G-Structures”, Transformation Groups in Differential Geometry, Classics in Mathematics, 70, Springer, Berlin, Heidelberg, 1995, 1–38 | DOI
[7] Atiyah M. F., Hitchin N. J., Singer I. M., “Self-duality in four-dimensional Riemannian geometry”, Proc. Roy. Soc. London. Series A, 362:1711 (1978), 425–461 | DOI
[8] Krivonosov L. N., Luk'yanov V. A., “The main theorem for (anti)self-dual conformal torsion-free connection”, Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 2, 29–38 (In Russian) | DOI
[9] Krivonosov L. N., Luk'yanov V. A., “Structure of the Main Tensor of Conformally Connected Torsion Free Space. Conformal Connections on Hypersurfaces of Projective Space”, J. Math. Sci., 231:2 (2018), 189–205 | DOI | DOI
[10] Dunajski M., Ferapontov E. V., Kruglikov B., “On the Einstein–Weyl and conformal self-duality equations”, J. Math. Phys., 56 (2015), 083501 | DOI
[11] Finikov S. P., Metod vneshnih form Kartana v differencial'noj geometrii [Cartan's method of exterior forms in differential geometry], Moscow, Leningrad, 1948, 432 pp. (In Russian)