Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2019_23_1_a9, author = {A. A. Andreev and J. O. Yakovleva}, title = {The {Goursat-type} problem for a hyperbolic equation and~system of third order hyperbolic equations}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {186--194}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2019_23_1_a9/} }
TY - JOUR AU - A. A. Andreev AU - J. O. Yakovleva TI - The Goursat-type problem for a hyperbolic equation and~system of third order hyperbolic equations JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2019 SP - 186 EP - 194 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2019_23_1_a9/ LA - ru ID - VSGTU_2019_23_1_a9 ER -
%0 Journal Article %A A. A. Andreev %A J. O. Yakovleva %T The Goursat-type problem for a hyperbolic equation and~system of third order hyperbolic equations %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2019 %P 186-194 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2019_23_1_a9/ %G ru %F VSGTU_2019_23_1_a9
A. A. Andreev; J. O. Yakovleva. The Goursat-type problem for a hyperbolic equation and~system of third order hyperbolic equations. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 1, pp. 186-194. http://geodesic.mathdoc.fr/item/VSGTU_2019_23_1_a9/
[1] Muskhelishvili N. I., Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti. Osnovnye uravneniia, ploskaia teoriia uprugosti, kruchenie i izgib [Some basic problems of the mathematical theory of elasticity. Fundamental equations, plane theory of elasticity, torsion and bending], Nauka, Moscow, 1966, 707 pp. (In Russian) | MR | Zbl
[2] Hadamard J., Lectures on Cauchy's problem in linear partial differential equations, Dover Publications, New York, 1952, v+316 pp. | Zbl
[3] Bitsadze A. V., “On the question of formulating the characteristic problem for second order hyperbolic systems”, Dokl. Akad. Nauk SSSR, 223:6 (1975), 1289–1292 (In Russian) | MR | Zbl
[4] Dzhokhadze O. M., “Influence of lower terms on the well-posedness of characteristics problems for third-order hyperbolic equations”, Math. Notes, 74:4 (2003), 491–501 | DOI | DOI | MR | Zbl
[5] Kharibegashvili S. S., “Solvability of a characteristic problem for second-order degenerate hyperbolic systems”, Differ. Equ., 25:1 (1989), 123–131 | MR
[6] Zikirov O. S., “On solvability non-local boundary value problem for the hyperbolic equation of the third order”, Sib. J. Pure and Appl. Math., 16:2 (2016), 16–25 (In Russian) | DOI | MR | Zbl
[7] Kinoshita T., “Gevrey wellposedness of the Cauchy problem for the hyperbolic equations of third order with coefficients depending only on time”, Publications of the Research Institute for Mathematical Sciences, 34:3, 249–270 | DOI
[8] Nikolov A., Popivanov N., “Singular solutions to Protter`s problem for (3+1)-D degenerate wave equation”, AIP Conf. Proc., 1497 (2012), 233–238 | DOI
[9] Colton D., “Pseudoparabolic equations in one space variable”, J. Differ. Equ., 12:3 (1972), 559–565 | DOI
[10] Andreev A. A., Yakovleva J. O., “The characteristic problem for one hyperbolic differentional equation of the third order with nonmultiple characteristics”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 13:1(2) (2013), 3–6 (In Russian)
[11] Korzyuk V. I., Cheb E. S., Thu L. T., “Solution of the mixed problem for the biwave equation by the method of characteristics”, Tr. Inst. Mat., 18:2 (2010), 36–54 (In Russian) | Zbl
[12] Petrovskii I. G., Izbrannye trudy. Sistemy uravnenii s chastnymi proizvodnymi. Algebraicheskaya geometriya, Nauka, M., 1986, 504 pp.
[13] Yakovleva J. O., “One characteristic problem for the general hyperbolic differential equation of the third order with nonmultiple characteristics”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2012, no. 3(28), 180–183 (In Russian) | DOI