A dual active set algorithm for optimal sparse convex regression
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 1, pp. 113-130

Voir la notice de l'article provenant de la source Math-Net.Ru

The shape-constrained problems in statistics have attracted much attention in recent decades. One of them is the task of finding the best fitting monotone regression. The problem of constructing monotone regression (also called isotonic regression) is to find best fitted non-decreasing vector to a given vector. Convex regression is the extension of monotone regression to the case of $2$-monotonicity (or convexity). Both isotone and convex regression have applications in many fields, including the non-parametric mathematical statistics and the empirical data smoothing. The paper proposes an iterative algorithm for constructing a sparse convex regression, i.e. for finding a convex vector $z\in \mathbb{R}^n$ with the lowest square error of approximation to a given vector $y\in \mathbb{R}^n$ (not necessarily convex). The problem can be rewritten in the form of a convex programming problem with linear constraints. Using the Karush–Kuhn–Tucker optimality conditions it is proved that optimal points should lie on a piecewise linear function. It is proved that the proposed dual active-set algorithm for convex regression has polynomial complexity and obtains the optimal solution (the Karush–Kuhn–Tucker conditions are fulfilled).
Keywords: dual active set algorithm, pool-adjacent-violators algorithm, isotonic regression
Mots-clés : monotone regression, convex regression.
@article{VSGTU_2019_23_1_a6,
     author = {A. A. Gudkov and S. V. Mironov and S. P. Sidorov and S. V. Tyshkevich},
     title = {A dual active set algorithm for optimal sparse convex regression},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {113--130},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2019_23_1_a6/}
}
TY  - JOUR
AU  - A. A. Gudkov
AU  - S. V. Mironov
AU  - S. P. Sidorov
AU  - S. V. Tyshkevich
TI  - A dual active set algorithm for optimal sparse convex regression
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2019
SP  - 113
EP  - 130
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2019_23_1_a6/
LA  - en
ID  - VSGTU_2019_23_1_a6
ER  - 
%0 Journal Article
%A A. A. Gudkov
%A S. V. Mironov
%A S. P. Sidorov
%A S. V. Tyshkevich
%T A dual active set algorithm for optimal sparse convex regression
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2019
%P 113-130
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2019_23_1_a6/
%G en
%F VSGTU_2019_23_1_a6
A. A. Gudkov; S. V. Mironov; S. P. Sidorov; S. V. Tyshkevich. A dual active set algorithm for optimal sparse convex regression. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 1, pp. 113-130. http://geodesic.mathdoc.fr/item/VSGTU_2019_23_1_a6/