Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2019_23_1_a5, author = {A. P. Yankovskii}, title = {Modeling of elastoplastic behavior of flexible spatially reinforced plates under refined theory of bending}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {90--112}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2019_23_1_a5/} }
TY - JOUR AU - A. P. Yankovskii TI - Modeling of elastoplastic behavior of flexible spatially reinforced plates under refined theory of bending JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2019 SP - 90 EP - 112 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2019_23_1_a5/ LA - ru ID - VSGTU_2019_23_1_a5 ER -
%0 Journal Article %A A. P. Yankovskii %T Modeling of elastoplastic behavior of flexible spatially reinforced plates under refined theory of bending %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2019 %P 90-112 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2019_23_1_a5/ %G ru %F VSGTU_2019_23_1_a5
A. P. Yankovskii. Modeling of elastoplastic behavior of flexible spatially reinforced plates under refined theory of bending. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 1, pp. 90-112. http://geodesic.mathdoc.fr/item/VSGTU_2019_23_1_a5/
[1] Qatu M. S., Sullivan R. W., Wang W., “Recent research advances on the dynamic analysis of composite shells: 2000–2009”, Composite Structures, 93:1 (2010), 14–31 | DOI
[2] Zhu F., Wang Z., Lu G., Nurick G., “Some theoretical considerations on dynamic response of sandwich structures under impulsive loading”, Int. J. Impact Eng., 37:6 (2010), 625–637 | DOI
[3] Kazanci Z., “Dynamic response of composite sandwich plates subjected to time-dependent pressure pulses”, Int. J. Nonlin. Mech., 46:5 (2011), 807–817 | DOI
[4] Gill S. K., Gupta M., Satsangi P., “Prediction of cutting forces in machining of unidirectional glass-fiber-reinforced plastic composites”, Front. Mech. Eng., 8:2 (2013), 187–200 | DOI
[5] Gibson R. F., Principles of composite material mechanics, Taylor Francis Group, New York, 2015, 815 pp.
[6] Tarnopol'skii Yu.. M., Zhigun I. G., Polyakov V. A., Prostranstvenno-armirovannye kompozitsionnye materialy [Spatially Reinforced Composite Materials], Mashinostroenie, Moscow, 1987, 224 pp. (In Russian)
[7] Schuster J., Heider D., Sharp K., Glowania M., “Measuring and modeling the thermal conductivities of three-dimensionally woven fabric composites”, Mech. Compos. Mater., 45:2 (2009), 241–254 | DOI
[8] Mohamed M. H., Bogdanovich A. E., Dickinson L. C., Singletary J. N., Lienhart R. R., “A new generation of 3D woven fabric performs and composites”, SAMPE J., 37:3 (2001), 3–17
[9] “Tarnopol'skii Yu. M. Polyakov V. A., Zhigun I. G.”, Polymer Mechanics, 9:5 (1973), 754–759 | DOI
[10] “Composites reinforced with a system of three straight mutually orthogonal fibers. 2. Experimental study”, Polymer Mechanics, 9:6 (1973), 895–900 | DOI
[11] Kregers A. F., Teters G. A., “Structural model of deformation of anisotropic three-dimensionally reinforced composites”, Mech. Compos. Mater., 18:1 (1982), 10–17 | DOI
[12] Yankovskii A. P., “Determination of the thermoelastic characteristics of spatially reinforced fibrous media in the case of general anisotropy of their components. 1. Structural model”, Mech. Compos. Mater., 46:5 (2010), 451–460 | DOI
[13] Solomonov Yu. S., Georgievskii V. P., Nedbai A. Ya., Andryushin V. A., Prikladnye zadachi mekhaniki kompozitnykh tsilindricheskikh obolochek [Applied Problems of Mechanics of Composite Cylindrical Shells], Fizmatlit, Moscow, 2014, 408 pp. (In Russian)
[14] Yankovskii A. P., “Using of explicit time-central difference method for numerical simulation of dynamic behavior of elasto-plastic flexible reinforced plates”, Computational Continuum Mechanics, 9:3 (2016), 279–297 (In Russian) | DOI
[15] Reissner E., “The effect of transverse shear deformations on the bending of elastic plates”, J. Appl. Mech., 12:2 (1945), 69–77 | MR
[16] Vasiliev V. V., Morozov E., Advanced Mechanics of Composite Materials and Structural Elements, Elsevier, Amsterdam, 2013, xii+412 pp.
[17] Abrosimov N. A., Bazhenov V. G., Nelineinye zadachi dinamiki kompozitnykh konstruktsii [Nonlinear problems of the dynamics of composite structures], Nizhni Novgorod State Univ., Nizhni Novgorod, 2002, 400 pp. (In Russian)
[18] Bogdanovich A. E., Nelineinye zadachi dinamiki tsilindricheskikh kompozitnykh obolochek [Nonlinear Problems in the Dynamics of Cylindrical Composite Shells], Zinatne, Riga, 1987, 295 pp. (In Russian) | MR
[19] Ambartsumyan S. A., Theory of Anisotropic Plates: Strength, Stability, and Vibration, Technomic Pub., Stamford, Conn., 1970, viii+248 pp. | MR
[20] Reddy J. N., Mechanics of laminated composite plates. Theory and analysis, CRC Press, Boca Raton, FL, 2004, xxiii+831 pp. | MR | Zbl
[21] Malmeister A. K., Tamuzh V. P., Teters G. A., Soprotivlenie zhestkikh polimernykh materialov [Strength of Polymer and Composite Materials], Zinatne, Riga, 1972, 500 pp. (In Russian)
[22] Belkaid K., Tati A., Boumaraf R., “A simple finite element with five degrees of freedom based on Reddy's third-order shear deformation theory”, Mech. Compos. Mater., 52:2 (2016), 367–384 | DOI
[23] Yankovskii A. P., “Construction of refined model of elastic-plastic behavior of flexible reinforced plates under dynamic loading”, Mekhanika kompozitsionnykh materialov i konstruktsii, 23:2 (2017), 283–304 (In Russian) | DOI | MR
[24] Whitney J., Sun C., “A higher order theory for extensional motion of laminated composites”, J. Sound Vibration, 30:1 (1973), 85–97 | DOI | Zbl
[25] Zubchaninov V. G., Mekhanika protsessov plasticheskikh sred [Mechanics Processes of Plastic Media], Fizmatlit, Moscow, 2010, 352 pp. (In Russian)
[26] Ivanov G. V., Volchkov Yu. M., Bogul'skii I. O., Anisimov S. A., Kurguzov V. D., Chislennoe reshenie dinamicheskikh zadach uprugoplasticheskogo deformirovaniia tverdykh tel [Solving Numerically Dynamic Problems of Elastoplastic Deformation of Solids], Sib. Univ. Izd-vo, Novosibirsk, 2002, 352 pp. (In Russian) | MR
[27] Vekua I. N., Shell theory: general methods of construction, Monographs, Advanced Texts and Surveys in Pure and Applied Mathematics, 25, John Wiley Sons. Inc., New York, 1985, xvi+287 pp. | MR | Zbl
[28] Houlston R., DesRochers C. G., “Nonlinear structural response of ship panels subjected to air blast loading”, Computers Structures, 26:1–2 (1987), 1–15 | DOI
[29] Kompozitsionnye materialy [Composite Materials. Handbook], ed. D. M. Karpinos, Naukova Dumka, Kiev, 1985, 592 pp. (In Russian)
[30] Handbook of Composites, ed. G. Lubin, Springer, New York, 1982, xi+786 pp. | DOI