Simulation of metal creep in nonstationary complex stress state
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 1, pp. 69-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

The simulation of the results of metal testing under creep conditions at the nonstationary complex stress state is considered. As an example, we consider the experimental data obtained by a group of Japanese scientists for testing tubular samples of stainless steel under the temperature of $650\,^{\circ}$C. The following article presents the test results for four different loading programs. These loading programs are various combinations of piecewise constant dependencies of tangential and normal stresses on time. The presented data was simulated using the hardening theory and the flow theory; two material constants used are determined from the condition of the minimum relative integral discrepancy between the experimental and theoretical values of the corresponding creep deformations. A comparison was made of the results of the simulation carried out with the results of the simulation of the same experimental data, carried out by other researchers using other theories. In these theories, a large number of material characteristics are used: from three to nine constants and additionally one material function. The advantage of the hardening theory and flow theory with only two material constants each compared to the other theories has been shown.
Keywords: metal creep, experiments, nonstationary complex stress state, modeling, hardening theory, flow theory.
@article{VSGTU_2019_23_1_a4,
     author = {A. M. Lokoshchenko and L. V. Fomin and Yu. G. Basalov and V. S. Agababyan},
     title = {Simulation of metal creep in nonstationary complex stress state},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {69--89},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2019_23_1_a4/}
}
TY  - JOUR
AU  - A. M. Lokoshchenko
AU  - L. V. Fomin
AU  - Yu. G. Basalov
AU  - V. S. Agababyan
TI  - Simulation of metal creep in nonstationary complex stress state
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2019
SP  - 69
EP  - 89
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2019_23_1_a4/
LA  - ru
ID  - VSGTU_2019_23_1_a4
ER  - 
%0 Journal Article
%A A. M. Lokoshchenko
%A L. V. Fomin
%A Yu. G. Basalov
%A V. S. Agababyan
%T Simulation of metal creep in nonstationary complex stress state
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2019
%P 69-89
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2019_23_1_a4/
%G ru
%F VSGTU_2019_23_1_a4
A. M. Lokoshchenko; L. V. Fomin; Yu. G. Basalov; V. S. Agababyan. Simulation of metal creep in nonstationary complex stress state. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 1, pp. 69-89. http://geodesic.mathdoc.fr/item/VSGTU_2019_23_1_a4/

[1] Abo el Ata M. M., Finnie I., “A study of creep damage rules”, J. Basic Eng., 94:3 (1972), 533–541 | DOI

[2] Tra̧mpczyński W. A., Hayhurst D. R., Leckie F. A., “Creep rupture of copper and aluminum under non-proportional loading”, J. Mech. Phys. Solids, 29:5–6 (1981), 353–374

[3] Murakami S., Sanomura Y., Saitoh K., “Formulation of cross-hardening in creep and its effect on the creep damage process of copper”, J. Eng. Mater. Technol., 108:2 (1986), 167–173 | DOI

[4] Trivaudey F., Delobelle P., “High temperature creep damage under biaxial loading—Part I: Experiments”, J. Eng. Mater. Technol., 112:4 (1990), 442–449 | DOI

[5] Lokoshchenko A. M., “Use of a vector damage parameter in modeling of long-term strength of metals”, Mechanics of Solids, 51:3 (2016), 315–320 | DOI

[6] Lokoshchenko A. M., “Modeling the long-term strength of metals in an unsteady complex stress state”, Prikladnaya Matematika i Mekhanika, 82:1 (2018), 84–97 (In Russian)

[7] Rabotnov Yu. N., Creep problems in structural members, North-Holland Publ. Co., Amsterdam, London, 1969, xiv+822 pp. | Zbl

[8] Ohashi Y., Ohno N., Kawai M., “Evaluation of creep constitutive equations for type 304 stainless steel under repeated multiaxial loadings”, J. Eng. Mater. Technol., 104:3 (1982), 159–164 | DOI

[9] Volkov I. A., Igumnov L. A., Kazakov D. A., Shishulin D. N., Smetanin I. V., “Defining relations of transient creep under complex stress state”, Problems of Strength and Plasticity, 78:4 (2016), 436–451 (In Russian) | DOI

[10] Malinin N. N., Khadjinsky G. M., “Theory of creep with anisotropic hardening”, Int. J. Mech. Sciences, 14:4 (1972), 235–246 | DOI | Zbl

[11] Volkov I. A., Igumnov L. A., Kazakov D. A., Shishulin D. N., Tarasov I. S., “State equations of unsteady creep under complex loading”, J. Appl. Mech. Tech. Phys., 59:3 (2018), 551–560 | DOI | DOI | Zbl

[12] Rabotnov Yu. N., “Designing machine parts for creep”, Izv. Akad. Nauk SSSR, OTN, 1948, no. 6, 789–800 (In Russian)

[13] Lokoshchenko A. M., Creep and long-term strength of metals, CRC Press, Boca, Raton, 2018, xviii+545 pp. | DOI