Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2019_23_1_a2, author = {S. V. Talalov}, title = {The vortex filament dynamics: {New} viewpoint on the problems of energy and effective mass}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {37--48}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2019_23_1_a2/} }
TY - JOUR AU - S. V. Talalov TI - The vortex filament dynamics: New viewpoint on the problems of energy and effective mass JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2019 SP - 37 EP - 48 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2019_23_1_a2/ LA - ru ID - VSGTU_2019_23_1_a2 ER -
%0 Journal Article %A S. V. Talalov %T The vortex filament dynamics: New viewpoint on the problems of energy and effective mass %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2019 %P 37-48 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2019_23_1_a2/ %G ru %F VSGTU_2019_23_1_a2
S. V. Talalov. The vortex filament dynamics: New viewpoint on the problems of energy and effective mass. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 1, pp. 37-48. http://geodesic.mathdoc.fr/item/VSGTU_2019_23_1_a2/
[1] Saffman P. G., Vortex dynamics, Cambridge Monographs on Mechanics and Applied Mathematics., Cambrige Univ. Press, Cambrige, 1992, xi+311 pp. | DOI | MR | Zbl
[2] Kitaev A. Yu., “Fault-tolerant quantum computation by anyons”, Annals Phys., 303:1 (2003), 2–30 | DOI | MR | Zbl
[3] Field B., Simula T., “Introduction to topological quantum computation with non-Abelian anyons”, Quantum Science and Technology, 3:4 (2018), UNSP 045004, arXiv: [quant-ph] 1802.06176 | DOI
[4] Batchelor G. K., An introduction to fluid dynamics, Cambridge Mathematical Library, Cambrige Univ. Press, Cambrige, 1999, xviii+615 pp | DOI | MR | Zbl
[5] Faddeev L. D., Takhtadzhyan L. A., Hamiltonian Methods in the Theory of Solitons, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1987, ix+592 pp. | MR | MR | Zbl
[6] Hirono Y., Kharzeev D. E, Sadofyev A. V., “Dynamics of vortices in chiral media: The chiral propulsion effect”, Phys. Rev. Lett., 121:14 (2018), 142301 | DOI | MR
[7] Ruban V. P., “The dynamics of straight vortex filaments in a Bose-Einstein condensate with a Gaussian density profile”, JETP, 124:6 (2017), 932–942, arXiv: [cond-mat.quant-gas] 1612.00165 | DOI
[8] Abhinav K., Guha P., “Inhomogeneous Heisenberg spin chain and quantum vortex filament as non-holonomically deformed NLS systems”, Eur. Phys. J. B, 91:3 (2018), 52, arXiv: [math-ph] 1703.02353 | DOI | MR
[9] Hasimoto H., “A soliton on a vortex filament”, J. Fluid Mech., 51:3 (1972), 477–485 | DOI | MR | Zbl
[10] Molitor M., “Generalization of Hasimoto's transformation”, Int. J. Geom. Methods Mod. Phys., 6:4 (2009), 625–630, arXiv: [math.DG] 1204.5324 | DOI | MR | Zbl
[11] Van Gorder R. A., “Quantum Hasimoto transformation and nonlinear waves on a superfluid vortex filament under the quantum local induction approximation”, Phys. Rev. E, 91:5 (2015), 053201, 33 pp., arXiv: [physics.flu-dyn] 1402.7023 | DOI
[12] Vilenkin N. Ia., Special functions and the theory of group representations, Translations of Mathematical Monographs, 22, American Mathematical Society, Providence, RI, 1968, x+612 pp. | MR | Zbl | Zbl
[13] Fushchich V. I., Nikitin A. G., Simmetriia uravnenii kvantovoi mekhaniki [Symmetry of the Equations of Quantum Mechanics ], Nauka, Moscow, 1990, 404 pp. (In Russian)
[14] Ruban V. P., “Hamilton's equations of motion of a vortex filament in the rotating Bose-Einstein condensate and their “soliton” solutions”, JETP Letters, 103(12) (2016), 780–784, arXiv: [cond-mat.quant-gas] 1609.03747 | DOI
[15] Dirac P. A. M., “Generalized hamiltonian dynamics”, Canad. J. Math., 2 (1950), 129–148 | DOI | MR | Zbl
[16] Talalov S. V., “About the non-standard viewpoint on the dynamics of closed vortex filament”, Mod. Phys. Letters B, 32 (2018), 1850410, 7 pp., arXiv: [math-ph] 1807.08922 | DOI | MR