Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2019_23_1_a10, author = {I. V. Kudinov and O. Yu. Kurganova and V. K. Tkachev}, title = {Exact analytical solution for the stationary two-dimensional heat conduction problem with a heat source}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {195--203}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2019_23_1_a10/} }
TY - JOUR AU - I. V. Kudinov AU - O. Yu. Kurganova AU - V. K. Tkachev TI - Exact analytical solution for the stationary two-dimensional heat conduction problem with a heat source JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2019 SP - 195 EP - 203 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2019_23_1_a10/ LA - ru ID - VSGTU_2019_23_1_a10 ER -
%0 Journal Article %A I. V. Kudinov %A O. Yu. Kurganova %A V. K. Tkachev %T Exact analytical solution for the stationary two-dimensional heat conduction problem with a heat source %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2019 %P 195-203 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2019_23_1_a10/ %G ru %F VSGTU_2019_23_1_a10
I. V. Kudinov; O. Yu. Kurganova; V. K. Tkachev. Exact analytical solution for the stationary two-dimensional heat conduction problem with a heat source. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 1, pp. 195-203. http://geodesic.mathdoc.fr/item/VSGTU_2019_23_1_a10/
[1] Chen C. S., Muleshkov A. S., Golberg M. A., Mattheij R.M.M., “A mesh-free approach to solving the axisymmetric Poisson's equation”, Numer. Meth. Part. D. E., 21:2 (2005), 349–367 | DOI | MR
[2] Tikhonov A. N., Samarskii A. A., Equations of mathematical physics, International Series of Monographs on Pure and Applied Mathematics, 39, Pergamon Press, Oxford etc., 1963, xvi+765 pp. | MR | MR | Zbl
[3] Glazunov Yu. T., Variatsionnye metody [Variational Methods], Regular and Chaotic Dynamics; Computer Research Institute, Moscow, Izhevsk, 2006, 470 pp. (In Russian)
[4] Tsoi P. V., Sistemnye metody rascheta kraevykh zadach teplomassoperenosa [System Methods of Calculating the Boundary Value Problems of Heat and Mass Transfer], Moscow Energy Institute, Moscow, 2005, 568 pp. (In Russian)
[5] Kantorovich L. V., Krylov V. I., Approximate methods of higher analysis, P. Noordhoff Ltd., Groningen, 1958, xii+681 pp. | MR | MR | Zbl | Zbl
[6] Kudinov V. A., Kudinov I. V., “About one Method of Obtaining of the Exact Analytical Decision of the Hyperbolic Equation of Heat Conductivity on the Basis of Use of Orthogonal Methods”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2010, no. 5(21), 159–169 (In Russian) | DOI
[7] Kudinov V. A., Kudinov I. V., Skvortsova M. P., “Generalized functions and additional boundary conditions in heat conduction problems for multilayered bodies”, Comput. Math. Math. Phys., 55:4 (2015), 666–667 | DOI | DOI | MR | Zbl
[8] Bollati J., Semitiel J., Tarzia D. A., “Heat balance integral methods applied to the one-phase Stefan problem with a convective boundary condition at the fixed face”, Appl. Math. Comp., 331 (2018), 1–19 | DOI | MR
[9] Hristov J., “The heat radiation diffusion equation explicit analytical solutions by improved integral-balance method”, Thermal science, 22:2 (2018), 777–788 | DOI
[10] Hristov J., “Double integral-balance method the fractional subdiffusion equation: approximate solutions, optimization problems to be resolved and numerical simulations”, J. Vib. Control, 23:17 (2017), 2795–2818 | DOI | MR
[11] Hristov J., “Multiple integral-balance method basic idea and an example with Mullin's model of thermal grooving”, Thermal science, 21:3 (2017), 1555–1560 | DOI | MR
[12] Kudinov V. A., Stefanyuk E. V., “Analytical solution method for heat conduction problems based on the introduction of the temperature perturbation front and additional boundary conditions”, J. Eng. Phys. Thermophys., 82:3 (2009), 537–555 | DOI
[13] Stefanyuk E. V., Kudinov V. A., “Approximate analytic solution of heat conduction problems with a mismatch between initial and boundary conditions”, Russian Math. (Iz. VUZ), 54:4 (2010), 55–61 | DOI | MR
[14] Kudinov V. A., Dikop V. V., Gabdushev R. Zh., Stefanyuk S. A., “On a method for determining eigenvalues in nonstationary heat conduction problems”, Izv. RAN. Energetika, 2002, no. 4, 112–117 (In Russian)
[15] Kantorovich L. V., “On an approximation method for the solution of a partial differential equation”, Dokl. Akad. Nauk SSSR, 2:9 (1934), 532–534 (In Russian) | Zbl
[16] Fedorov F. M., Granichnyi metod resheniia prikladnykh zadach matematicheskoi fiziki [The boundary method for solving applied problems of mathematical physics], Nauka, Novosibirsk, 2000, 220 pp. (In Russian) | MR
[17] Kudryashov N. A., “Approximate solutions of nonlinear heat conduction problem”, Comput. Math. Math. Phys., 45:11 (2005), 1965–1972 | MR | Zbl
[18] Wang G. T., Pei K., Agarwal R. P., Zhang L. H., Ahmad B., “Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line”, J. Comp. Appl. Math., 343 (2018), 230–239 | DOI | MR
[19] Kudinov V. A., Klebleev R. M., Kuklova E. A., “Obtaining exact analytical solutions for nonstationary heat conduction problems using orthogonal methods”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:1 (2017), 197–206 (In Russian) | DOI