Boundary value problem for mixed-compound equation with fractional derivative, functional delay and advance
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 1, pp. 20-36

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Tricomi problem for the functional-differential mixed-compound equation $LQu(x,y)=0$ in the class of twice continuously differentiable solutions. Here $L$ is a differential-difference operator of mixed parabolic-elliptic type with Riemann–Liouville fractional derivative and linear shift by $y$. The $Q$ operator includes multiple functional delays and advances $a_1(x)$ and $a_2(x)$ by $x$. The functional shifts $a_1(x)$ and $a_2(x)$ are the orientation preserving mutually inverse diffeomorphisms. The integration domain is $D=D^+\cup D^-\cup I$. The “parabolicity” domain $D^+$ is the set of $(x,y)$ such that $x_0$, $y>0$. The ellipticity domain is $D^-=D_0^-\cup D_1^-\cup D_2^-$, where $D_k^-$ is the set of $(x,y)$ such that $x_k$, $-\rho_k(x)$, and $\rho_k=\sqrt{a_1^k(x)(x_1-a_1^k(x))}$, $\rho_k(x)=\rho_0(a_1^k(x))$, $k=0, 1, 2$. A general solution to this Tricomi problem is found. The uniqueness and existence theorems are proved.
Keywords: mixed-compound equation, fractional derivative, difference operator, Tricomi problem.
@article{VSGTU_2019_23_1_a1,
     author = {A. N. Zarubin and E. V. Chaplygina},
     title = {Boundary value problem for mixed-compound equation with fractional derivative, functional delay and advance},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {20--36},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2019_23_1_a1/}
}
TY  - JOUR
AU  - A. N. Zarubin
AU  - E. V. Chaplygina
TI  - Boundary value problem for mixed-compound equation with fractional derivative, functional delay and advance
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2019
SP  - 20
EP  - 36
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2019_23_1_a1/
LA  - ru
ID  - VSGTU_2019_23_1_a1
ER  - 
%0 Journal Article
%A A. N. Zarubin
%A E. V. Chaplygina
%T Boundary value problem for mixed-compound equation with fractional derivative, functional delay and advance
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2019
%P 20-36
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2019_23_1_a1/
%G ru
%F VSGTU_2019_23_1_a1
A. N. Zarubin; E. V. Chaplygina. Boundary value problem for mixed-compound equation with fractional derivative, functional delay and advance. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 1, pp. 20-36. http://geodesic.mathdoc.fr/item/VSGTU_2019_23_1_a1/