Boundary value problem for mixed-compound equation with fractional derivative, functional delay and advance
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 1, pp. 20-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Tricomi problem for the functional-differential mixed-compound equation $LQu(x,y)=0$ in the class of twice continuously differentiable solutions. Here $L$ is a differential-difference operator of mixed parabolic-elliptic type with Riemann–Liouville fractional derivative and linear shift by $y$. The $Q$ operator includes multiple functional delays and advances $a_1(x)$ and $a_2(x)$ by $x$. The functional shifts $a_1(x)$ and $a_2(x)$ are the orientation preserving mutually inverse diffeomorphisms. The integration domain is $D=D^+\cup D^-\cup I$. The “parabolicity” domain $D^+$ is the set of $(x,y)$ such that $x_0$, $y>0$. The ellipticity domain is $D^-=D_0^-\cup D_1^-\cup D_2^-$, where $D_k^-$ is the set of $(x,y)$ such that $x_k$, $-\rho_k(x)$, and $\rho_k=\sqrt{a_1^k(x)(x_1-a_1^k(x))}$, $\rho_k(x)=\rho_0(a_1^k(x))$, $k=0, 1, 2$. A general solution to this Tricomi problem is found. The uniqueness and existence theorems are proved.
Keywords: mixed-compound equation, fractional derivative, difference operator, Tricomi problem.
@article{VSGTU_2019_23_1_a1,
     author = {A. N. Zarubin and E. V. Chaplygina},
     title = {Boundary value problem for mixed-compound equation with fractional derivative, functional delay and advance},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {20--36},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2019_23_1_a1/}
}
TY  - JOUR
AU  - A. N. Zarubin
AU  - E. V. Chaplygina
TI  - Boundary value problem for mixed-compound equation with fractional derivative, functional delay and advance
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2019
SP  - 20
EP  - 36
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2019_23_1_a1/
LA  - ru
ID  - VSGTU_2019_23_1_a1
ER  - 
%0 Journal Article
%A A. N. Zarubin
%A E. V. Chaplygina
%T Boundary value problem for mixed-compound equation with fractional derivative, functional delay and advance
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2019
%P 20-36
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2019_23_1_a1/
%G ru
%F VSGTU_2019_23_1_a1
A. N. Zarubin; E. V. Chaplygina. Boundary value problem for mixed-compound equation with fractional derivative, functional delay and advance. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 1, pp. 20-36. http://geodesic.mathdoc.fr/item/VSGTU_2019_23_1_a1/

[1] Muravnik A. B., “On the Cauchy problem for differential-difference equations of the parabolic type”, Dokl. Math., 66:1 (2002), 107–110 | MR | Zbl

[2] Zarubin A. N., “Tricomi problem for a functional-differential advanced-retarded Lavrent'ev–Bitsadze equation”, Differ. Equ., 53:10 (2017), 1329–1339 | DOI | DOI

[3] Bitsadze A. V., Nekotorye klassy uravnenii v chastnykh proizvodnykh [Some classes of partial differential equations], Nauka, Moscow, 1981, 448 pp. (In Russian) | Zbl

[4] Zarubin A. N., Uravneniia smeshannogo tipa s zapazdyvaiushchim argumentom [Equations of mixed type with retarded argument], Orel State Univ., Orel, 1999, 255 pp. (In Russian)

[5] Korpusov M. O., Pletner Yu. D. Sveshnikov A. G., “On the existence of a steady-state oscillation mode in the Cauchy problem for a composite-type equation”, Comput. Math. Math. Phys., 41:4 (2001) | MR | Zbl

[6] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poriadka i nekotorye ikh prilozheniia [Integrals and derivatives of fractional order and some of their applications], Nauka i tekhnika, Minsk, 1987, 688 pp. (In Russian) | Zbl

[7] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, riadov i proizvedenii [Tables of integrals, sums, series and products], Nauka, M., 1971, 1108 pp. (In Russian) | MR

[8] Ter-Krikorov A. M., Shabunin M. I., Kurs matematicheskogo analiza [A course of mathematical analysis], Nauka, Moscow, 1988, 816 pp. (In Russian) | Zbl

[9] Nakhushev A. M., Elementy drobnogo ischisleniia i ikh primeneniia [Elements of Fractional Calculus and their Application], Kabardino-Balkarsk. Nauchn. Tsentr Ross. Akad. Nauk, Nalchik, 2000, 253 pp. (In Russian)

[10] Zarubin A. N., “Boundary value problem for a mixed type equation with an advanced-retarded argument”, Differ. Equ., 48:10 (2012), 1384–1391 | DOI | Zbl

[11] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006, xvi+523 pp. | DOI

[12] Ditkin V. A., Prudnikov A. P., Integral'nye preobrazovaniia i operatsionnoe ischislenie [Integral transforms and operational calculus], Nauka, Moscow, 1974, 521 pp. (In Russian) | Zbl