Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2018_22_4_a8, author = {V. V. Struzhanov and A. V. Korkin and A. E. Chaykin}, title = {One approach to determination of the ultimate load-bearing capacity of mechanical systems with softening elements}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {762--773}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2018_22_4_a8/} }
TY - JOUR AU - V. V. Struzhanov AU - A. V. Korkin AU - A. E. Chaykin TI - One approach to determination of the ultimate load-bearing capacity of mechanical systems with softening elements JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2018 SP - 762 EP - 773 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2018_22_4_a8/ LA - ru ID - VSGTU_2018_22_4_a8 ER -
%0 Journal Article %A V. V. Struzhanov %A A. V. Korkin %A A. E. Chaykin %T One approach to determination of the ultimate load-bearing capacity of mechanical systems with softening elements %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2018 %P 762-773 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2018_22_4_a8/ %G ru %F VSGTU_2018_22_4_a8
V. V. Struzhanov; A. V. Korkin; A. E. Chaykin. One approach to determination of the ultimate load-bearing capacity of mechanical systems with softening elements. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 4, pp. 762-773. http://geodesic.mathdoc.fr/item/VSGTU_2018_22_4_a8/
[1] Sedov L. I., Mekhanika sploshnoi sredy [Continuum Mechanics], v. 1, Nauka, Moscow, 1970, 492 pp. (In Russian)
[2] Struzhanov V. V., Mironov V. I., Deformatsionnoe razuprochnenie materiala v elementakh konstruktsii [Deformational Softening of Material in Structural Elements], UrO RAN, Ekaterinburg, 1995, 190 pp. (In Russian)
[3] Vil'deman V. E., Chausov N. G., “Conditions of strain softening upon stretching of the specimen of special configuration”, Zavodskaia laboratoriia. Diagnostika materialov, 73:10 (2007), 55–59 (In Russian)
[4] Vil'deman V. E., Tretyakov M. P., “Material testing by plotting total deformation curves”, J. Mach. Manuf. Reliab., 42:2 (2013), 166–170 | DOI
[5] Struzhanov V. V., Korkin A. V., “Regarding stretching process stability of one bar system with softening elements”, Vestnik Ural'skogo gosudarstvennogo universiteta putei soobshcheniia, 2016, no. 3(31), 4–17 (In Russian) | DOI
[6] Andreeva E. A., “Solution of one-dimensional softening materials plasticity problems”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2008, no. 2(17), 152–160 (In Russian) | DOI
[7] Arsenin V. Ya., Metody matematicheskoi fiziki i spetsial'nye funktsii [Methods of mathematical physics and special functions], Nauka, Moscow, 1974, 431 pp. (In Russian)
[8] Struzhanov V. V., Korkin A. V., “On the solution of non-linear equations of trim of a single expandable frame structure with softening elements by the method of simple iterations”, Vestnik Ural'skogo gosudarstvennogo universiteta putei soobshcheniia, 2017, no. 2(34), 4–16 (In Russian) | DOI
[9] Poston T., Stewart I., Catastrophe Theory and Its Applications, Surveys and Reference Works in Mathematics, 2, Pitman, London, San Francisco, Melbourne, 1978, xviii+491 pp. | MR | Zbl
[10] Gilmore R., Catastrophe theory for scientists and engineers, A Wiley-Interscience Publication, John Wiley Sons, New York, 1981, xvii+666 pp. | MR | Zbl
[11] Pars L. A., A treatise on analytical dynamics, Heinemann Educational Books, London, 1965, xxi+641 pp. | MR | Zbl
[12] Ilyushin A. A., “On the foundations of the general mathematical theory of plasticity”, Vestn. Mosk. Univ., Ser. I, 1961, no. 3, 31–36 (In Russian) | MR | Zbl
[13] Kachanov L. M., Foundations of the theory of plasticity, North-Holland Series in Applied Mathematics and Mechanics, 12, North-Holland Publ., Amsterdam, 1971, xiii+482 pp. | MR | Zbl
[14] Struzhanov V. V., “The determination of the deformation diagram of a material with a falling branch using the torsion diagram of a cylindrical sample”, Sib. Zh. Ind. Mat., 15:1 (2012), 138–144
[15] Radchenko V. P., Vvedenie v mekhaniku deformiruemykh sistem [Introduction to the mechanics of deformable systems], Samara State Technical Univ., Samara, 2009, 241 pp. (In Russian)
[16] Southwell R. V., An introduction to the theory of elasticity. For engineers and physicists, Oxford Engineering Science Series, Clarendon Press, Oxford, 1936, ix+510 pp. | Zbl