Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2018_22_4_a7, author = {G. N. Belostochnyi and O. A. Myltcina}, title = {Dynamic stability of heated geometrically irregular cylindrical shell in supersonic gas flow}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {750--761}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2018_22_4_a7/} }
TY - JOUR AU - G. N. Belostochnyi AU - O. A. Myltcina TI - Dynamic stability of heated geometrically irregular cylindrical shell in supersonic gas flow JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2018 SP - 750 EP - 761 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2018_22_4_a7/ LA - ru ID - VSGTU_2018_22_4_a7 ER -
%0 Journal Article %A G. N. Belostochnyi %A O. A. Myltcina %T Dynamic stability of heated geometrically irregular cylindrical shell in supersonic gas flow %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2018 %P 750-761 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2018_22_4_a7/ %G ru %F VSGTU_2018_22_4_a7
G. N. Belostochnyi; O. A. Myltcina. Dynamic stability of heated geometrically irregular cylindrical shell in supersonic gas flow. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 4, pp. 750-761. http://geodesic.mathdoc.fr/item/VSGTU_2018_22_4_a7/
[1] Vol'mir A. S., Obolochki v potoke zhidkosti i gaza [The shells in flow liquid and gas], Nauka, Moscow, 1979, 320 pp. (In Russian)
[2] Ambartsumyan S. A. Bagdasaryan Zh. E., “Of the stability of orthotropic plates streamlined by a supersonic gas flow”, Izv. Akad. Nauk SSSR, OTN, Mekhanika i Mashinostroenie, 1961, no. 4, 91–96 (In Russian) | Zbl
[3] Bolotin V. V., Novichkov Yu. N., “Buckling and steady-state flayter thermally compressed panels in supersonic flow”, Inzhenernyi Zhurnal, 1961, no. 2, 82–96 (In Russian) | Zbl
[4] Movchan A. A., “Oscillations of the plate moving in the gas”, Prikladnaia Matematika i Mekhanika, 20:2 (1956), 211–222 (In Russian)
[5] Tung Ming-teh,, “The stability of an elastic plate in a supersonic flow”, Dokl. Akad. Nauk SSSR, 120:4 (1958), 726–729 (In Russian) | MR
[6] Vedeneev V. V., “High-frequency flutter of a rectangular plate”, Fluid Dyn., 41:4 (2006), 641–648 | DOI | MR | Zbl
[7] Ogibalov P. M., Gribanov V. F., Termoustoichivost' plastin i obolochek [Thermostability of plates and shells], Moscow State Univ., Moscow, 1968, 520 pp. (In Russian)
[8] Ogibalov P. M., Voprosy dinamiki i ustoichivosti obolochek [The problems of dynamics and stability of shells], Moscow State Univ., Moscow, 1963, 417 pp. (In Russian) | Zbl
[9] Bolotin V. V., “Thermal buckling of plates and shallow shells in a supersonic gas flow”, Raschety na prochnost', Issue 6, Mashgiz, Moscow, 1960, 190–216 (In Russian)
[10] Zhilin P. A., “Linear theory of ribbed shells”, Izv. Akad. Nauk SSSR, Mekhanika Tverdogo Tela, 1970, no. 4, 150–166 (In Russian)
[11] Belostochnyi G. N., Ul'yanova O. I., “Continuum model for a composition of shells of revolution with thermosensitive thickness”, Mechanics of Solids, 46:2 (2011), 184–191 | DOI
[12] Belostochnyi G. N., Rassudov V. M., “Continuum model of orthotropic heat-sensitive “shell-ribs” system taking into account the influence of large deflection”, Prikladnaia teoriia uprugosti, Issue 8, Saratov Polytechnic Inst., Saratov, 1983, 10–22 (In Russian)
[13] Belostochnyi G. N., Rassudov V. M., “Continuum approach to the thermal stability of elastic “plate-ribs” systems”, Prikladnaia teoriia uprugosti, Saratov Polytechnic Inst., Saratov, 1980, 94–99 (In Russian)
[14] Zhilin P. A., “General theory of ribbed shells. The strength of turbines”, Proc. of the Central Turbine-Boiler Institute, Issue 8, Leningrad, 1968, 46–70 (In Russian)
[15] Karpov V. V., Sal'nikov A. Yu., “Variational method output nonlinear equations of motion of shallow ribbed shells”, Vestnik Grazhdanskikh Inzhenerov, 2008, no. 4(17), 121–124 (In Russian)
[16] Belostochnyi G. N., Myltcina O. A., “Thermoelasticity equations of shells compositions”, Vestnik Saratovskogo Tekhnicheskogo Universiteta, 2011, no. 4 (59), Issue 1, 56–64 (In Russian)
[17] Onanov G. G., “Equations with singular coefficients of the type of the delta-function and its derivatives”, Dokl. Akad. Nauk SSSR, 191:5 (1970), 997–1000 (In Russian) | MR | Zbl
[18] Belostochnyi G. N., “Analytical methods for the determination of closed integrals of singular differential equations of thermoelasticity, geometrically irregular shells”, Doklady Akademii Voennykh Nauk, 1999, no. 1, 14–26 (In Russian)
[19] Geckeler J. W., “Elastostatik”, Handbuch der Physik, v. 6, 1928, 141–308 (In German) | Zbl
[20] Il'yushin A. A., “Law of plane sections in aerodynamics of high supersonic velocity”, Prikladnaia Matematika i Mekhanika, 1956, no. 6, 733–755 (In Russian)
[21] Vol'mir A. S., Ustoichivost' deformiruemykh sistem [Stability of deformable systems], Nauka, Moscow, 1967, 984 pp. (In Russian)
[22] Vladimirov V. S., Generalized functions in mathematical physics, Mir Publ., Moscow, 1979, 362 pp. | MR | Zbl | Zbl
[23] Kantorovich L. V., Krylov V. I., Approximate methods of higher analysis, P. Noordhoff Ltd., Groningen, 1958, xii+681 pp. | MR | MR | Zbl | Zbl
[24] Rektorys K., Variational methods in mathematics, science and engineering, D. Reidel Publ., Dordrecht, Boston, London, 1980, 571 pp. ; | MR | Zbl | DOI
[25] Belostochnyi G. N., Rassudov V. M., “Thermoelastic system of “plate-ribs” type in a supersonic gas flow”, Prikladnaia teoriia uprugosti, Issue 8, Saratov Polytechnic Inst., Saratov, 1983, 114–121 (In Russian)
[26] Egorov K. V., Osnovy teorii avtomaticheskogo regulirovaniia [Fundamentals of the theory of automatic control], Energiia, Moscow, 1967, 648 pp. (In Russian)
[27] Rassudov V. M., Krasiukov V. P., Pankratov N. D., Nekotorye zadachi termouprugosti plastinok i pologikh obolochek [Some problems of thermoelasticity of plates and flat covers], Saratov Univ., Saratov, 1973, 155 pp. (In Russian)
[28] Nazarov A. A., Osnovy teorii i metody rascheta pologikh obolochek [Fundamentals of the Theory and Methods for Designing Shallow Shells], Stroiizdat, Leningrad, Moscow, 1966, 304 pp. (In Russian)
[29] Myltcina O. A., Belostochnyi G. N., “Stability of heated orthotropic geometrically irregular plate in a supersonic gas flow”, PNRPU Mechanics Bulletin, 2017, no. 4, 109–120 (In Russian) | DOI