Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2018_22_4_a5, author = {L. K. Shiryaeva and E. G. Repina}, title = {On the some properties of a symmetric {Grubbs'} copula}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {714--734}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2018_22_4_a5/} }
TY - JOUR AU - L. K. Shiryaeva AU - E. G. Repina TI - On the some properties of a symmetric Grubbs' copula JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2018 SP - 714 EP - 734 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2018_22_4_a5/ LA - ru ID - VSGTU_2018_22_4_a5 ER -
%0 Journal Article %A L. K. Shiryaeva %A E. G. Repina %T On the some properties of a symmetric Grubbs' copula %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2018 %P 714-734 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2018_22_4_a5/ %G ru %F VSGTU_2018_22_4_a5
L. K. Shiryaeva; E. G. Repina. On the some properties of a symmetric Grubbs' copula. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 4, pp. 714-734. http://geodesic.mathdoc.fr/item/VSGTU_2018_22_4_a5/
[1] Blagoveshchenskii Yu. N., “Basics of copula's theory”, Applied Econometrics, 26:2 (2012), 113–130 (In Russian)
[2] Jwaid T., De Baets B., Kalicka J., Mesiar R., “Conic aggregation functions”, Fuzzy Sets and Systems, 167:1 (2011), 3–20 | DOI | Zbl
[3] Rodríguez-Lallena J. A., Úbeda-Flores M., “A new class of bivariate copulas”, Statistics and Probability Letters, 66:3 (2004), 315–325 | DOI | Zbl
[4] Kim J. M., Sungur E. A., Choi T., Heo T. Y., “Generalized bivariate copulas and their properties”, Model Assisted Statistics and Applications, 6:2 (2011), 127–136 | DOI
[5] Mesiar R., Najjari V., “New families of symmetric/asymmetric copulas”, Fuzzy Sets and Systems, 252:1 (2014), 99–110 | DOI | Zbl
[6] Nelsen R. B., An Introduction to Copulas, Lecture Notes in Statistics, Springer-Verlag, New York, 2006, xiii+269 pp. | DOI | Zbl
[7] Fantazzini D., “Analysis of Multidimensional Probability Distributions with Copula Functions, I”, Applied Econometrics, 22:2 (2011), 98–134 (In Russian)
[8] Ali Dolati, “On Dependence Properties of Random Minima and Maxima”, Communications in Statistics — Theory and Methods, 38:3 (2008), 393–399 | DOI
[9] Church C., The Asymmetric $t$-Copula with Individual Degrees of Freedom, A thesis submitted for the degree of MSc in Mathematical Finance, University of Oxford, Michaelmas, 2012, 48 pp. Available at (October 23, 2018) http://www.maths.ox.ac.uk/system/files/legacy/12804/The_Asymmetric_t-Copula_with_Individual_Degrees_of_Freedom.pdf
[10] Balaev A. I., “The copula based on multivariate $f$-distribution with vector of degrees of freedom”, Applied Econometrics, 33:1 (2014), 90–110 (In Russian)
[11] Shiryaeva L. K., “On tail dependence for Grubbs' copula-function”, Russian Math. (Iz. VUZ), 59:12 (2015), 56–72 | DOI | Zbl
[12] Kong-Sheng Zhang, Jin-Guan Lin, Pei-Rong Xu, “A new class of copulas involved geometric distribution: Estimation and applications”, Insurance: Mathematics and Economics, 66 (2016), 1–10 | DOI | Zbl
[13] Pearson E. S., Chandra Secar C., “The effciently of statistical tools and a criterion for the rejection of outlying observations”, Biometrika, 28:3–4 (1936), 308–320 | DOI | Zbl
[14] Grubbs F., “Sample Criteria for Testing Outlying observations”, Ann. Math. Statist., 21:1 (1950), 27–58 | DOI | Zbl
[15] Barnett V., Lewis T., Outliers in statistical data, John Wiley Sons, Chichester, 1984 | Zbl
[16] Zhang J., Keming Y., “The null distribution of the likelihood-ratio test for one or two outliers in a normal sample”, TEST, 15:1 (2006), 141–150 | DOI | Zbl
[17] Shiryaeva L. K., “On null and alternative distribution of statistics of two-side discordancy test for an extreme outlier”, Russian Math. (Iz. VUZ), 58:10 (2014), 52–66 | DOI | Zbl
[18] Shiryaeva L. K., “Calculation of power measures of Grabbs' criterion for checking for one outlier”, Sib. Zh. Ind. Mat., 13:4 (2010), 141–154 (In Russian) | MR | Zbl
[19] Shiryaeva L. K., “Using of special Hermite functions for investigation of power properties of Grubbs' criterion”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2012, no. 4(29), 131–145 (In Russian) | DOI
[20] Shiryaeva L. K., “On distribution of Grubbs' statistics in case of normal sample with outlier”, Russian Math. (Iz. VUZ), 61:4 (2017), 72–88 | DOI | Zbl
[21] Jahnke E., Emde F., Lösch F., Tafeln höherer Funktionen [Tables of higher functions], B. G. Teubner Verlagsgesellschaft, Stuttgart, 1960, xii+318 pp. (In German) | Zbl | Zbl
[22] Galambos J., “Exchangeability”, Encyclopedia of statistical sciences, v. 2, eds. S. Kotz, and N. L. Johnson, Wiley, NY, 1986
[23] R Core Team., R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2013 http://www.R-project.org/
[24] Ferguson S. T., Genest C., Hallin M., “Kendall’s tau for serial dependence”, Canadian Journal of Statistics, 28:3 (2000), 587–604 | DOI | Zbl
[25] Grothe O., Schnieders J., Sigers J., “Measuring association and dependence between random vectors”, Journal of Multivariate Analysis, 123 (2013), 96–110 | DOI
[26] Aivazian S. A., Mkhitaryan V. S., Applied Statistics and Essentials of Econometrics, v. 1, Probability Theory and Applied Statistics, Yuniti-Dana, Moscow, 2000 (In Russian)