Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2018_22_4_a1, author = {V. V. Palin}, title = {Geometric solutions of the {Riemann} problem for the scalar conservation law}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {620--646}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2018_22_4_a1/} }
TY - JOUR AU - V. V. Palin TI - Geometric solutions of the Riemann problem for the scalar conservation law JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2018 SP - 620 EP - 646 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2018_22_4_a1/ LA - ru ID - VSGTU_2018_22_4_a1 ER -
%0 Journal Article %A V. V. Palin %T Geometric solutions of the Riemann problem for the scalar conservation law %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2018 %P 620-646 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2018_22_4_a1/ %G ru %F VSGTU_2018_22_4_a1
V. V. Palin. Geometric solutions of the Riemann problem for the scalar conservation law. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 4, pp. 620-646. http://geodesic.mathdoc.fr/item/VSGTU_2018_22_4_a1/
[1] Bressan A., Hyperbolic systems of conservation laws. The one-dimensional Cauchy problem, Oxford Lecture Series in Mathematics and its Applications, 20, Oxford Univ. Press, Oxford, 2000, xii+250 pp. | MR | Zbl
[2] Dafermos C. M., Hyperbolic conservation laws in continuum physics, Grundlehren der Mathematischen Wissenschaften, 325, Springer, Berlin, 2006, xxxviii+826 pp. | DOI | MR | Zbl
[3] Godunov S. K., Romenskii E., Elements of Continuum Mechanics and Conservation Laws, Kluwer Acad., New York, 2003, viii+258 pp. | DOI | MR | Zbl
[4] Evans L. C., Partial differential equations, Graduate Studies in Mathematics, 19, Amer. Math. Soc., Providence, RI, 2010, xxi+749 pp. | MR | Zbl
[5] Colella P., Glaz, H. M., “Efficient solution algorithms for the Riemann problem for real gases”, J. Comp. Phys., 59 (1985), 264–289 | DOI | MR | Zbl
[6] Lax P. D., Hyperbolic partial differential equations, Courant Lecture Notes in Mathematics, 14, AMS, Providence, RI, 2006, vii+217 pp. | MR | Zbl
[7] Lax P. D., Wendroff B., “Systems of conservation laws”, Commun. Pure Appl. Math., 13 (1960), 217–237 | DOI | MR | Zbl
[8] Kruzkov S. N., “The Cauchy problem in the large for certain non-linear first order differential equations”, Sov. Math., Dokl., 1 (1960), 474–477 | MR | Zbl
[9] Subbotin A. I., Minimaksnye neravenstva i uravneniia Gamil'tona–Iakobi [Minimax inequalities and Hamilton-Jacobi equations], Nauka, Moscow, 1991, 216 pp. (In Russian) | MR
[10] Kolokol'tsov V. N., Maslov V. P., “Idempotent analysis as a tool of control theory and optimal synthesis. I”, Funct. Anal. Appl., 23:1 (1989), 1–11 | DOI | MR | Zbl
[11] Kolokol'tsov V. N., Maslov V. P., “Idempotent analysis as a tool of control theory and optimal synthesis. 2”, Funct. Anal. Appl., 23:4 (1989), 300–307 | DOI | MR | Zbl
[12] Whitham G. B., Linear and nonlinear waves, Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts, Wiley, New York, 1999, xvi+636 pp. | MR | Zbl
[13] Danilov V. G., Omel'yanov G. A., Shelkovich V. M, “Weak asymptotics method and interaction of nonlinear waves”, Asymptotic Methods for Wave and Quantum Problems, Amer. Math. Soc. Transl. Ser. 2, 208, Amer. Math. Soc., Providence, RI, 2003, 33–165 | DOI | MR
[14] Oleinik O. A., “On the Cauchy problem for nonlinear equations in the class of discontinuous functions”, Dokl. Akad. Nauk SSSR, 95:3 (1954), 451–454 (In Russian) | Zbl
[15] Vvedenskaya N. D., “Solution of the Cauchy problem for a nonlinear equation with discontinuous initial conditions by the method of finite differences”, Dokl. Akad. Nauk SSSR, 111 (1956), 517–520 (In Russian) | Zbl