Geometric solutions of the Riemann problem for the scalar conservation law
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 4, pp. 620-646

Voir la notice de l'article provenant de la source Math-Net.Ru

For the Riemann problem $$ \left\{\begin{array}{l}u_t+(\Phi(u,x))_x=0,\\ u|_{t=0}=u_-+[u]\theta(x) \end{array}\right. $$ a new definition of the solution is proposed. We associate a Hamiltonian system with initial conservation law, and define the geometric solution as the result of the action of the phase flow on the initial curve. In the second part of this paper, we construct the equalization procedure, which allows us to juxtapose a geometric solution with a unique entropy solution under the condition that $\Phi$ does not depend on $x$. If $\Phi$ depends on $x$, then the equalization procedure allows us to construct a generalized solution of the original Riemann problem.
Keywords: Riemann problem, conservation laws, associated Hamiltonian system.
@article{VSGTU_2018_22_4_a1,
     author = {V. V. Palin},
     title = {Geometric solutions of the {Riemann} problem for the scalar conservation law},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {620--646},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2018_22_4_a1/}
}
TY  - JOUR
AU  - V. V. Palin
TI  - Geometric solutions of the Riemann problem for the scalar conservation law
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2018
SP  - 620
EP  - 646
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2018_22_4_a1/
LA  - ru
ID  - VSGTU_2018_22_4_a1
ER  - 
%0 Journal Article
%A V. V. Palin
%T Geometric solutions of the Riemann problem for the scalar conservation law
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2018
%P 620-646
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2018_22_4_a1/
%G ru
%F VSGTU_2018_22_4_a1
V. V. Palin. Geometric solutions of the Riemann problem for the scalar conservation law. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 4, pp. 620-646. http://geodesic.mathdoc.fr/item/VSGTU_2018_22_4_a1/