Geometric solutions of the Riemann problem for the scalar conservation law
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 4, pp. 620-646.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the Riemann problem $$ \left\{\begin{array}{l}u_t+(\Phi(u,x))_x=0,\\ u|_{t=0}=u_-+[u]\theta(x) \end{array}\right. $$ a new definition of the solution is proposed. We associate a Hamiltonian system with initial conservation law, and define the geometric solution as the result of the action of the phase flow on the initial curve. In the second part of this paper, we construct the equalization procedure, which allows us to juxtapose a geometric solution with a unique entropy solution under the condition that $\Phi$ does not depend on $x$. If $\Phi$ depends on $x$, then the equalization procedure allows us to construct a generalized solution of the original Riemann problem.
Keywords: Riemann problem, conservation laws, associated Hamiltonian system.
@article{VSGTU_2018_22_4_a1,
     author = {V. V. Palin},
     title = {Geometric solutions of the {Riemann} problem for the scalar conservation law},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {620--646},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2018_22_4_a1/}
}
TY  - JOUR
AU  - V. V. Palin
TI  - Geometric solutions of the Riemann problem for the scalar conservation law
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2018
SP  - 620
EP  - 646
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2018_22_4_a1/
LA  - ru
ID  - VSGTU_2018_22_4_a1
ER  - 
%0 Journal Article
%A V. V. Palin
%T Geometric solutions of the Riemann problem for the scalar conservation law
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2018
%P 620-646
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2018_22_4_a1/
%G ru
%F VSGTU_2018_22_4_a1
V. V. Palin. Geometric solutions of the Riemann problem for the scalar conservation law. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 4, pp. 620-646. http://geodesic.mathdoc.fr/item/VSGTU_2018_22_4_a1/

[1] Bressan A., Hyperbolic systems of conservation laws. The one-dimensional Cauchy problem, Oxford Lecture Series in Mathematics and its Applications, 20, Oxford Univ. Press, Oxford, 2000, xii+250 pp. | MR | Zbl

[2] Dafermos C. M., Hyperbolic conservation laws in continuum physics, Grundlehren der Mathematischen Wissenschaften, 325, Springer, Berlin, 2006, xxxviii+826 pp. | DOI | MR | Zbl

[3] Godunov S. K., Romenskii E., Elements of Continuum Mechanics and Conservation Laws, Kluwer Acad., New York, 2003, viii+258 pp. | DOI | MR | Zbl

[4] Evans L. C., Partial differential equations, Graduate Studies in Mathematics, 19, Amer. Math. Soc., Providence, RI, 2010, xxi+749 pp. | MR | Zbl

[5] Colella P., Glaz, H. M., “Efficient solution algorithms for the Riemann problem for real gases”, J. Comp. Phys., 59 (1985), 264–289 | DOI | MR | Zbl

[6] Lax P. D., Hyperbolic partial differential equations, Courant Lecture Notes in Mathematics, 14, AMS, Providence, RI, 2006, vii+217 pp. | MR | Zbl

[7] Lax P. D., Wendroff B., “Systems of conservation laws”, Commun. Pure Appl. Math., 13 (1960), 217–237 | DOI | MR | Zbl

[8] Kruzkov S. N., “The Cauchy problem in the large for certain non-linear first order differential equations”, Sov. Math., Dokl., 1 (1960), 474–477 | MR | Zbl

[9] Subbotin A. I., Minimaksnye neravenstva i uravneniia Gamil'tona–Iakobi [Minimax inequalities and Hamilton-Jacobi equations], Nauka, Moscow, 1991, 216 pp. (In Russian) | MR

[10] Kolokol'tsov V. N., Maslov V. P., “Idempotent analysis as a tool of control theory and optimal synthesis. I”, Funct. Anal. Appl., 23:1 (1989), 1–11 | DOI | MR | Zbl

[11] Kolokol'tsov V. N., Maslov V. P., “Idempotent analysis as a tool of control theory and optimal synthesis. 2”, Funct. Anal. Appl., 23:4 (1989), 300–307 | DOI | MR | Zbl

[12] Whitham G. B., Linear and nonlinear waves, Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts, Wiley, New York, 1999, xvi+636 pp. | MR | Zbl

[13] Danilov V. G., Omel'yanov G. A., Shelkovich V. M, “Weak asymptotics method and interaction of nonlinear waves”, Asymptotic Methods for Wave and Quantum Problems, Amer. Math. Soc. Transl. Ser. 2, 208, Amer. Math. Soc., Providence, RI, 2003, 33–165 | DOI | MR

[14] Oleinik O. A., “On the Cauchy problem for nonlinear equations in the class of discontinuous functions”, Dokl. Akad. Nauk SSSR, 95:3 (1954), 451–454 (In Russian) | Zbl

[15] Vvedenskaya N. D., “Solution of the Cauchy problem for a nonlinear equation with discontinuous initial conditions by the method of finite differences”, Dokl. Akad. Nauk SSSR, 111 (1956), 517–520 (In Russian) | Zbl