The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 3, pp. 504-517.

Voir la notice de l'article provenant de la source Math-Net.Ru

Linear model of micropolar elastic continuum (known also as the Cosserat continuum) is considered. Kinematics and strain measures are discussed. The symmetric small strains tensor, relative microrotation vector and spatial gradient of the total microrotation vector (the wryness tensor) are then employed for a covariant formulation of the micropolar theory. By means of the principle of virtual displacements much simplified by the lack of internal forces and couples contributions to the virtual work and the Lagrange multipliers method the micropolar theory of elasticity is developed. Hemitropic micropolar continuum model is investigated in further details. The paper is to be considered as a universal covariant script of equations of the linear micropolar theory of elasticity derived from the virtual displacements principle.
Keywords: micropolar continuum, couple stress, virtual displacements principle, virtual work
Mots-clés : force stress, Lagrange multipliers, covariant formulation.
@article{VSGTU_2018_22_3_a5,
     author = {Yu. N. Radayev},
     title = {The {Lagrange} multipliers method in covariant formulations of micropolar continuum mechanics theories},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {504--517},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2018_22_3_a5/}
}
TY  - JOUR
AU  - Yu. N. Radayev
TI  - The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2018
SP  - 504
EP  - 517
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2018_22_3_a5/
LA  - ru
ID  - VSGTU_2018_22_3_a5
ER  - 
%0 Journal Article
%A Yu. N. Radayev
%T The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2018
%P 504-517
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2018_22_3_a5/
%G ru
%F VSGTU_2018_22_3_a5
Yu. N. Radayev. The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 3, pp. 504-517. http://geodesic.mathdoc.fr/item/VSGTU_2018_22_3_a5/

[1] Planck M., Einführung in die theoretische Physik. Bd. I: Einführung in die allgemeine Mechanik, S. Hirzel, Leipzig, 1928, viii+226 pp. (In German) | Zbl

[2] Lurie A. I., Analytical mechanics, Foundations of Engineering Mechanics, Springer, Berlin, 2002, 864 pp. | MR | Zbl

[3] Arnold V. I., Mathematical methods of classical mechanics, Graduate Texts in Mathematics, 60, Springer-Verlag, New York, Heidelberg, Berlin, 1978, x+462 pp. | MR | Zbl | Zbl

[4] Sedov L. I., Introduction to the mechanics of a continuous medium, London, 1965, xvi+270 pp. | MR | Zbl | Zbl

[5] Nowacki W., Teoria sprȩżystości, Warszawa, Państwowe Wydawnictwo Naukowe, 1970, 769 pp. (In Polish); Новацкий В., Теория упругости, Мир, М., 1975, 872 с.

[6] Gurevich G. B., Foundations of the theory of algebraic invariants, P. Noordhoff Ltd., Groningen, The Netherlands, 1964, viii+429 pp. | MR | MR | Zbl

[7] Cosserat E., Cosserat F., Théorie des corps déformables, A. Hermann et Fils, Paris, 1909 http://resolver.library.cornell.edu/math/1878913 | Zbl

[8] Rosenfeld B. A., “Multidimensional Spaces”, A History of Non-Euclidean Geometry, Studies in the History of Mathematics and Physical Sciences, 12, Springer, New York, 1988 | DOI | MR | MR | Zbl

[9] Rashevskii P. K., Rimanova geometriia i tenzornyi analiz [Riemannian geometry and tensor analysis], Nauka, Moscow, 1964, 664 pp. (In Russian) | MR | Zbl

[10] Sokolnikoff I. S., Tensor analysis. Theory and applications to geometry and mechanics of continua, Applied Mathematics Series, John Wiley and Sons, Inc., New York, London, Sydney, 1964, xii+361 pp. | MR | Zbl

[11] Gyunther N. M., Kurs variatsionnogo ischisleniia [A course of the calculus of variations], Gostekhteoretizdat, Moscow, Leningrad, 1941, 308 pp. (In Russian)

[12] Gelfand I. M., Fomin S. V., Calculus of variations, Prentice-Hall, Inc, Englewood Cliffs, N.J., 1965, vii+232 pp. | MR | Zbl

[13] Kovalev V. A., Radayev Yu. N., Elementy teorii polia: variatsionnye simmetrii i geometricheskie invarianty [Elements of the Field Theory: Variational Symmetries and Geometric Invariants], Fizmatlit, Moscow, 2009, 156 pp. (In Russian)