Numerical and experimental research of pure bending of beams made of the titanium ABVT-20 alloy
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 3, pp. 430-446.

Voir la notice de l'article provenant de la source Math-Net.Ru

Solution of the problem of pure bending of a beam of rectangular cross section taking into account the difference of properties tension and compression under creep is considered. Program algorithm of mathematical simulation of the stress redistribution process along the height of a beam with allowance for damage accumulation is constructed and implemented. Modeling of creep processes of softening material is based on equations of the kinetic theory of creep and damage. In this paper, Runge–Kutta–Merson numerical integration algorithm for creep damage analysis is presented. The simulation results are compared with the experimental data of pure bending of rectangular section beams from the titanium ABVT-20 alloy under the action of an alternating moment and a prolonged exposure to temperature of 750$^\circ$C. A satisfactory agreement between the simulation results and the experimental data was obtained, taking into account the duration of the temperature aging in the creep law.
Keywords: high temperature creep, different resistivity, pure bending, experimental studies, modeling, ABVT-20 alloy.
@article{VSGTU_2018_22_3_a2,
     author = {S. V. Iyavoynen and A. U. Larichkin and V. E. Kolodezev},
     title = {Numerical and experimental research of pure bending of beams made of  the titanium {ABVT-20} alloy},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {430--446},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2018_22_3_a2/}
}
TY  - JOUR
AU  - S. V. Iyavoynen
AU  - A. U. Larichkin
AU  - V. E. Kolodezev
TI  - Numerical and experimental research of pure bending of beams made of  the titanium ABVT-20 alloy
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2018
SP  - 430
EP  - 446
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2018_22_3_a2/
LA  - ru
ID  - VSGTU_2018_22_3_a2
ER  - 
%0 Journal Article
%A S. V. Iyavoynen
%A A. U. Larichkin
%A V. E. Kolodezev
%T Numerical and experimental research of pure bending of beams made of  the titanium ABVT-20 alloy
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2018
%P 430-446
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2018_22_3_a2/
%G ru
%F VSGTU_2018_22_3_a2
S. V. Iyavoynen; A. U. Larichkin; V. E. Kolodezev. Numerical and experimental research of pure bending of beams made of  the titanium ABVT-20 alloy. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 3, pp. 430-446. http://geodesic.mathdoc.fr/item/VSGTU_2018_22_3_a2/

[1] Ribeiro F. C., Marinho E. P., Inforzato D. J., Costa P. R., Batalha G. F., “Creep age forming: a short review of fundaments and applications”, Journal of Achievements in Materials and Manufacturing Engineering, 43:1 (2010), 353–361 Available at (August 24, 2018) http://jamme.acmsse.h2.pl/papers_vol43_1/43139.pdf

[2] Beal J. D., Boyer R., Sanders D., “Forming of titanium and titanium Alloys”, ASM Handbook, v. 14B, Metalworking: Sheet Forming, ASM International, 2006, 656–669

[3] Yang Y., Zhan L., Ma Q. et al., “Effect of pre-deformation on Creep age forming of AA2219 plate: Springback, microstructures and mechanical properties”, J. Mater. Process Technology, 229 (2016), 697–702 | DOI

[4] Lam A. C. L., Shi Z., Yang H. et al., “Creep-age forming AA2219 plates with different stiffener designs and pre-form age conditions: Experimental and finite element studies”, J. Mater. Process Technology, 219 (2015), 155–163 | DOI

[5] Yang Y., Zhan L., Shen R. et al., “Effect of pre-deformation on creep age forming of 2219 aluminum alloy: Experimental and constitutive modelling”, Mater. Sci. Eng. A, 683 (2017), 227–235 | DOI

[6] Oleinikov A. I., Bormotin K.S., “Modeling the process of forming wing panels in the creep mode with strain aging in the solution of inverse problems”, Uchenye Zapiski Komsomol'skogo-na-Amure Gosudarstvennogo Tekhnicheskogo Universiteta, 2015, no. II-1(22), 346–365 (In Russian)

[7] Korobeynikov S. N., Oleinikov A. I., Gorev B. V., Bormotin K. S., “Mathematical simulation of creep processes in metal patterns made of materials with different extension compression properties”, Vychislitel'nye Metody i Programmirovanie: Novye Vychislitel'nye Tekhnologii, 9:1 (2008), 346–365 (In Russian)

[8] Lokoshchenko A. M., Polzuchest' i dlitel'naia prochnost' metallov [Creep and Long-Term Strength of Metals], Fizmatlit, Moscow, 2016, 504 pp. (In Russian)

[9] Kaibyshev O. A., Sverkhplastichnost' promyshlennykh splavov [The Superplasticity of Industrial Alloys], Metallurgiia, Moscow, 1984, 264 pp. (In Russian)

[10] Safiullin R. V., “Superplastic forming and pressure welding of multilayer hollow structures. Part II. Experience of IMSP RAS”, Pis'ma o Materialakh, 2:1 (2012), 36–39 (In Russian)

[11] Radchenko V. P., Saushkin M. N., Polzuchest' i relaksatsiia ostatochnykh napriazhenii v uprochnennykh konstruktsiiakh [Creep and Relaxation of Residual Stresses in Hardened Structures], Mashinostroenie-1, Moscow, 2005, 226 pp. (In Russian)

[12] Lokoshchenko A. M., Agakhi K. A., Fomin L. V., “Beam bending under creep considering the damage and multimodulus behavior of the material”, Mechanic Engineering and Engineering Education, 2012, no. 3(32), 29–35 (In Russian)

[13] Kolodezev V. E., Gorev B. V., Larichkin A. Iu., Shevtsova L. I., “Pure bending of beams from an alloy ABVT-20 in creep mode at alternating loading”, Tekhnologiia Mashinostroeniia, 2017, no. 2(176), 11–16 (In Russian)

[14] Sosnin O. V., Gorev B. V., Nikitenko A. F., Energeticheskii variant teorii polzuchesti [Energy Variant of the Creep Theory], Lavrentiev Institute of Hydrodynamics, Novosibirsk, 1986, 95 pp. (In Russian)

[15] Nikitenko A. F., Polzuchest' i dlitel'naia prochnost' metallicheskikh materialov [Creep and Long-term Strength of Metal Materials], Novosibirsk State University of Architecture and Civil Engineering, Novosibirsk, 1997, 278 pp. (In Russian)

[16] Gorev B. V., Lubashevskaya I. V., Panamarev V. A., Iyavoynen S.V., “Description of creep and fracture of modern construction materials using kinetic equations in energy form”, J. Appl. Mech. Tech. Phys., 55:6 (2014), 1020–1030 | DOI

[17] Gorev B. V., “To calculation for transient creep beam bending of material with different characteristics in tension and compression”, Dinamika sploshnoi sredy [Continuum Dynamics], Lavrentiev Institute of Hydrodynamics, Novosibirsk, 1973, 44–51 (In Russian)

[18] Kuznetsov E. B., Leonov S. S., “Pure Bending for the Multimodulus Material Beam at Creep Conditions”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 6:4 (2013), 26–38 (In Russian)

[19] Sosnin O. V., “Creep in materials with different tension and compression behavior”, J. Appl. Mech. Tech. Phys., 11:5 (1970), 832–835 | DOI

[20] Merson R. H., “An operational method for the study of integration processes”, Proc. Symp. Data Processing, Weapons Res. Establ. Salisbury, Salisbury, 1957, 110–125; Pospelov V. V., Kutta-Merson method, Encyclopedia of Mathematics, 2014 Available at (August 24, 2018) http://www.encyclopediaofmath.org/index.php?title=Kutta-Merson_method&oldid=33669

[21] Pao Y. C., Engineering analysis. Interactive methods and programs with FORTRAN, QuickBASIC, MATLAB, and Mathematica, CRC Press, Boca Raton, FL, 1998, 360 pp. | Zbl

[22] Rabotnov Yu. N., Polzuchest' elementov konstruktsii [Creep of Construction Elements], Nauka, Moscow, 2014, 752 pp. (In Russian)

[23] Gorev B. V., Klopotov I. D., “Description of the creep process and long-term strength by equations with one scalar damage parameter”, J. Appl. Mech. Tech. Phys., 35:5 (1994), 726–734 | DOI

[24] Tsvelodub I. Yu., “Construction of constitutive equations of creep in orthotropic materials with different properties under tension and compression”, J. Appl. Mech. Tech. Phys, 53:6 (2012), 888–890 | DOI