Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2018_22_3_a11, author = {V. B. Pen'kov and O. S. Novikova and L. Levina}, title = {A construction algorithm for full parametric analytical solutions in the basic mixed problem of elastostatics for~the~simply connected body}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {586--598}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2018_22_3_a11/} }
TY - JOUR AU - V. B. Pen'kov AU - O. S. Novikova AU - L. Levina TI - A construction algorithm for full parametric analytical solutions in the basic mixed problem of elastostatics for~the~simply connected body JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2018 SP - 586 EP - 598 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2018_22_3_a11/ LA - ru ID - VSGTU_2018_22_3_a11 ER -
%0 Journal Article %A V. B. Pen'kov %A O. S. Novikova %A L. Levina %T A construction algorithm for full parametric analytical solutions in the basic mixed problem of elastostatics for~the~simply connected body %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2018 %P 586-598 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2018_22_3_a11/ %G ru %F VSGTU_2018_22_3_a11
V. B. Pen'kov; O. S. Novikova; L. Levina. A construction algorithm for full parametric analytical solutions in the basic mixed problem of elastostatics for~the~simply connected body. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 3, pp. 586-598. http://geodesic.mathdoc.fr/item/VSGTU_2018_22_3_a11/
[1] Novikova O. S., “A construction methodology for full parametric analytical solutions in the basic mixed problems of elastostatics to ensure the stages of technological processes of pressure treatment”, Problemy i perspektivy razvitiia mashinostroeniia [Problems and prospects for the development of mechanical engineering], v. 2, Lipetsk, 2016, 203–208 (In Russian)
[2] Muskhelishvili N. I., Some Basic Problems of the Mathematical Theory of Elasticity, Fundamental Equations Plane Theory of Elasticity Torsion and Bending, Springer, Dordrecht, 1977, xxxi+732 pp. | DOI
[3] Lur'e A. I., Teoriia uprugosti [Theory of Elasticity], Nauka, Moscow, 1970, 940 pp. (In Russian)
[4] Rabotnov Yu. N., Mekhanika deformiruemogo tverdogo tela [Mechanics of a deformable rigid body], Nauka, Moscow, 1979, 744 pp. (In Russian) | Zbl
[5] Sedov L. I., Similarity and dimensional methods in mechanics, Mir Publ., Moscow, 1982, 424 pp. | Zbl | Zbl
[6] Neuber H., “Ein neuer Ansatz zur Lösung räumlicher Probleme der Elastizitätstheorie. Der Hohlkegel unter Einzellast als Beispiel”, ZAMM, 14:4 (1934), 203–212 | DOI | Zbl
[7] Penkov V. B., Satalkina L. V., Shulmin A. S., “The use of the method of boundary states to analyse an elastic medium with cavities and inclusions”, J. Appl. Math. Mech., 78:4 (2014), 384–394 | DOI | Zbl
[8] Nayfeh A. H., Introduction to perturbation techniques, A wiley-interscience publication. John Wiley Sons, Inc., New York, 1993, xiv+519 pp.
[9] Minaeva N. V., Metod vozmushchenii v mekhanike deformiruemykh tel [Perturbation Method in Mechanics of Deformable Bodies], Nauchnaia kniga, Moscow, 2002, 156 pp. (In Russian)
[10] Schwarz H. A., “Über einige Abbildungsaufgaben”, Journal für die reine und angewandte Mathematik, 1869:70, 105–120 | DOI
[11] Struzhanov V. V., “On one iteration method of stress calculation in non-simply connected solids”, Computational Technologies, 11:6 (2006), 118–124 (In Russian) | Zbl