Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2018_22_3_a1, author = {E. A. Ilyina and L. A. Saraev}, title = {Modeling of phase transformations and superelastic hardening of unstable materials}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {407--429}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2018_22_3_a1/} }
TY - JOUR AU - E. A. Ilyina AU - L. A. Saraev TI - Modeling of phase transformations and superelastic hardening of unstable materials JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2018 SP - 407 EP - 429 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2018_22_3_a1/ LA - ru ID - VSGTU_2018_22_3_a1 ER -
%0 Journal Article %A E. A. Ilyina %A L. A. Saraev %T Modeling of phase transformations and superelastic hardening of unstable materials %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2018 %P 407-429 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2018_22_3_a1/ %G ru %F VSGTU_2018_22_3_a1
E. A. Ilyina; L. A. Saraev. Modeling of phase transformations and superelastic hardening of unstable materials. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 3, pp. 407-429. http://geodesic.mathdoc.fr/item/VSGTU_2018_22_3_a1/
[1] Isupova I. L., Trusov P. V., “Mathematical modeling of phase transformations in steel under thermomechanical loading”, PNRPU Mechanics Bulletin, 2013, no. 3, 126–156 (In Russian)
[2] Mishustin I. V., Movchan A. A., “Modeling of phase and structure transformations occurring in shape memory alloys under nonmonotonically varying stresses”, Mech. Solids, 49:1 (2014), 27–39 | DOI
[3] Mishustin I. V., Movchan A. A., “Analog of the plastic flow theory for describing martensitic inelastic strains in shape memory alloys”, Mech. Solids, 50:2 (2015), 176–190 | DOI
[4] Kazarina S. A., Movchan A. A., Sil'chenko A. L., “Experimental investigation the interaction between phase and structure deformations in shape memory alloys”, Mekhanika kompozitsionnykh materialov i konstruktsii [Composite Mechanics and Design], 22:1 (2016), 85–98 (In Russian)
[5] Movchan A. A., Sil'chenko A. L., Kazarina S. A., “Experimental study and theoretical simulation of the cross hardening effect in shape memory alloys”, Russ. Metall., 2017:10 (2017), 779–784 | DOI
[6] Trusov P. V., Volegov P. S., Isupova I. L., Kondrat'ev N. S., Makarevich E. S., Niashina N. D., Ostanina T. V., Sharifullina E. R., “Multilevel model for the description of solid-state phase transitions in multicomponent alloys”, Vestnik Permskogo nauchnogo tsentra URO RAN, 2016, no. 4, 83–90 (In Russian)
[7] Tikhomirova K. A., “Isothermal deformation of shape memory alloy in different temperature ranges. Uniaxial case”, Mekhanika kompozitsionnykh materialov i konstruktsii [Composite Mechanics and Design], 23:2 (2017), 263–282 (In Russian)
[8] Tikhomirova K. A., “Phenomenological modeling of phase and structural deformations in shape memory alloys. One-dimensional case”, Computational Mechanics of Continuous Media, 11:1 (2018), 36–50 (In Russian) | DOI
[9] Tikhomirova K. A., “Experimental and theoretical study of the relation between phase and structural deformations in shape memory alloys”, PNRPU Mechanics Bulletin, 2018, no. 1, 40–57 (In Russian) | DOI
[10] Mutter D., Nielaba P., “Simulation of the shape memory effect in a NiTi nano model system”, J. All. Compounds, 577 (2013), S83–S87, arXiv: [cond-mat.mtrl-sci] 1202.1078 | DOI
[11] Auricchio F., Bonetti E., Scalet G., Ubertini F., “Theoretical and numerical modeling of shape memory alloys accounting for multiple phase transformations and martensite reorientation”, Int. J. Plasticity, 59 (2014), 30–54 | DOI
[12] Yu C., Kang G., Kan Q., “Crystal plasticity based constitutive model of NiTi shape memory alloy considering different mechanisms of inelastic deformation”, Int. J. Plasticity, 54 (2014), 132–162 | DOI
[13] Elibol C., Wagner M. F.-X., “Investigation of the stress-induced martensitic transformation in pseudoelastic NiTi under uniaxial tension, compression and compression–shear”, Mat. Sci. Eng. A, 621 (2015), 76–81 | DOI
[14] Lobo P. S., Almeida J., Guerreiro L., “Shape memory alloys behaviour: A review”, Procedia Engineering, 114 (2015), 776–783 | DOI
[15] Yoo Y.-I., Kim Y.-J., Shin D.-K., Lee J.-J., “Development of martensite transformation kinetics of NiTi shape memory alloys under compression”, Int. J. Sol. Struct., 64–65 (2015), 51–61 | DOI
[16] Cisse C., Zaki W., Zineb T. B., “A review of constitutive models and modeling techniques for shape memory alloys”, Int. J. Plasticity, 76 (2016), 244–284 | DOI
[17] Fabrizio M., Pecoraro M., Tibullo V., “A shape memory alloy model by a second order phase transition”, Mech. Res. Com., 74 (2016), 20–26 | DOI
[18] Saraev L. A., Matematicheskoe modelirovanie uprugoplasticheskikh svoistv mnogokomponentnykh kompozitsionnykh materialov [Mathematical modeling of elastoplastic properties of multicomponent composite materials], Samara Science Center of RAS, Samara, 2017, 222 pp. (In Russian)
[19] Ilyina E. A., Saraev L. A., “The impact of the kinetics of phase transformations on the superelastic hardening of an unstable material”, Sovremennye materialy, tekhnika i tekhnologii, 2017, no. 7(15), 28–38 (In Russian)
[20] Christensen R. M., Mechanics of composite materials, Wiley Sons Inc., New York, 1979, xiv+348 pp.
[21] Shermergor T. D., Teoriia uprugosti mikroneodnorodnykh sred [The theory of elasticity of microinhomogeneous media], Nauka, Moscow, 1979, 399 pp. (In Russian)
[22] Saraev A. L., Saraev L. A., “Macroscopic elastic moduli of multicomponent composites with variable microstructure”, Mathematics, Economics and Management, 1:3 (2015), 35–40 (In Russian)
[23] Steurer W., “Crystal Structures of Metallic Elements and Compounds”, Physical Metallurgy, v. 1, eds. David E. Laughlin, Kazuhiro Hono, Elsevier Inc., 2014, 1–101 | DOI
[24] Murakami Y., “Lattice softening, phase stability and elastic anomaly of the $\beta$-Au-Cu-Zn alloys”, J. Phys. Soc. Jpn., 33:5 (1972), 1350–1361 | DOI
[25] Nakanishi N., Mori T., Miura S., Murakami Y., Kachi S., “Pseudoelasticity in Au-Cd thermoelastic martensite”, Philosophical Magazine, 28:2 (1973), 277–282 | DOI