Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2018_22_2_a8, author = {K. S. Kolegov and A. I. Lobanov}, title = {Numerical study of mass transfer in drop and film systems}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {344--363}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a8/} }
TY - JOUR AU - K. S. Kolegov AU - A. I. Lobanov TI - Numerical study of mass transfer in drop and film systems JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2018 SP - 344 EP - 363 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a8/ LA - ru ID - VSGTU_2018_22_2_a8 ER -
%0 Journal Article %A K. S. Kolegov %A A. I. Lobanov %T Numerical study of mass transfer in drop and film systems %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2018 %P 344-363 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a8/ %G ru %F VSGTU_2018_22_2_a8
K. S. Kolegov; A. I. Lobanov. Numerical study of mass transfer in drop and film systems. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 2, pp. 344-363. http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a8/
[1] Sefiane K., “Patterns from drying drops”, Adv. Coll. Inter. Sci., 206 (2014), 372–381 | DOI
[2] Routh A. F., “Drying of thin colloidal films”, Rep. Prog. Phys., 76:4 (2013), 046603 | DOI
[3] Harris D. J., Hu H., Conrad J. C., Lewis J. A., “Patterning colloidal films via evaporative lithography”, Phys. Rev. Lett., 98:14 (2007), 148301 | DOI
[4] Kukhtevich I. V., Bukatin A. S., Mukhin I. S., Evstrapov A. A., “Microfluidic chips for the study of biological objects using high-resolution microscopy”, Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki, 77:1 (2012), 111–115 (In Russian)
[5] Rieger B., van den Doel L. R., van Vliet L. J., “Ring formation in nanoliter cups: quantitative measurements of flow in micromachined wells”, Phys. Rev. E, 68:3 (2003), 036312 | DOI
[6] Deegan R. D., Bakajin O., Dupont T. F., Huber G., Nagel S. R., Witten T. A., “Contact line deposits in an evaporating drop”, Phys. Rev. E, 62:1 (2000), 756–765 | DOI
[7] Fischer B. J., “Particle convection in an evaporating colloidal droplet”, Langmuir, 18:1 (2002), 60–67 | DOI
[8] Diana A., Castillo M., Brutin D., Steinberg T., “Sessile drop wettability in normal and reduced gravity”, Microgravity Sci. Technol., 24:3 (2012), 195–202 | DOI
[9] Bartashevich M. V., Kuznetsov V. V., Kabov O. A., “Gravity effect on the axisymmetric drop spreading”, Microgravity Sci. Technol., 22:1 (2010), 107–114 | DOI
[10] Konovalov V. I., Pakhomov A. N., Pakhomova Yu. V., “Geometry, Circulation and Heat and Mass Transfer in Evaporation of Drop on the Substrate”, Transactions of the TSTU, 17:2 (2011), 371–387 (In Russian)
[11] Tarasevich Y. Y., Vodolazskaya I. V., Isakova O. P., Abdel Latif M. S., “Evaporation-induced flow inside circular wells: analytical results and simulations”, Microgravity Sci. Technol., 21, Suppl. 1 (2009), 39–44 | DOI
[12] Kolegov K. S., “Formation of Ring Structures in a Drying under the Mask Film of Colloidal Solution”, Bulletin of the South Ural State University, Series: Mathematical Modelling, Programming and Computer Software, 7:1 (2014), 24–33 (In Russian) | DOI | Zbl
[13] Kolegov K. S., Lobanov A. I., “Mathematical Modeling of Fluid Dynamics in Evaporating Drop with Taking into Account Capillary and Gravitational Forces”, Vestnik Rossiiskogo universiteta druzhby narodov. Seriya: Matematika. Informatika. Fizika, 2014, no. 2, 375–380 (In Russian)
[14] Kolegov K. S., “Comparison of quasisteady and nonsteady mathematical models of fluid flow in evaporating drop with due regard for the viscosity”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 3, 110–122 (In Russian) | DOI
[15] Kolegov K. S., Lobanov A. I., “Comparing of a quasisteady and nonsteady mathematical models of fluid flow in evaporating drop”, Computer Research and Modeling, 4:4 (2012), 811–825 (In Russian)
[16] Kaneda M., Takao Y., Fukai J., “Thermal and solutal effects on convection inside a polymer solution droplet on a substrate”, Int. J. Heat Mass Transfer, 53:21–22 (2010.), 4448–4457 | DOI | Zbl
[17] Jung Y., Kajiya T., Yamaue T., Doi M., “Film formation kinetics in the drying process of polymer solution enclosed by bank”, Jpn. J. Appl. Phys., 48:3 (2009), 031502 | DOI
[18] Ehrhard P., Davis S. H., “Non-isothermal spreading of liquid drops on horizontal plates”, J. Fluid Mech., 229 (1991), 365–388 | DOI | Zbl
[19] Cahile M., Benichou O., Cazabat A. M., “Evaporating droplets of completely wetting liquids”, Langmuir, 18:21 (2002), 7985–7990 | DOI
[20] Hamamoto Y., Christy J. R. E., Sefiane K., “Order-of-magnitude increase in flow velocity driven by mass conservation during the evaporation of sessile drops”, Phys. Rev. E, 83 (2011), 051602 | DOI
[21] Parneix C., Vandoolaeghe P., Nikolayev V. S., Quere D., Li J., Cabane B., “Dips and rims in dried colloidal films”, Phys. Rev. Lett., 105:26 (2010), 266103 | DOI
[22] Bodiguel H., Leng J., “Imaging the drying of a colloidal suspension”, Soft Matter., 6:21 (2010), 5451–5460 | DOI
[23] Stuart A. M., Peplow A. T., “The Dynamics of the theta method”, SIAM J. Sci. and Stat. Comput., 12:6 (1991), 1351–1372 | DOI | MR | Zbl
[24] Samarskii A. A., Gulin A. V., Chislennye metody [Numerical Methods], Nauka, Moscow, 1989, 432 pp. (In Russian) | MR
[25] Samarskii A. A., Vabishchevich P. N., “Difference schemes for non-stable problems”, Matem. Mod., 2:11 (1990), 89–98 (In Russian) | MR | Zbl
[26] Okuzono T., Kobayashi M., Doi M., “Final shape of a drying thin film”, Phys. Rev. E, 80:2 (2009), 021603 | DOI
[27] Tarasevich Y. Y., Vodolazskaya I. V., Isakova O. P., “Desiccating colloidal sessile drop: dynamics of shape and concentration”, Colloid Polym. Sci., 289:9 (2011), 1015–1023 | DOI
[28] Maki K. L., Kumar S., “Fast Evaporation of Spreading Droplets of Colloidal Suspensions”, Langmuir, 27:18 (2011), 11347–11363 | DOI
[29] Barash L. Yu., Bigioni T. P., Vinokur V. M., Shchur L. N., “Evaporation and fluid dynamics of a sessile drop of capillary size”, Phys. Rev. E, 79:4 (2009), 046301 | DOI
[30] Mollaret R., Sefiane K., Christy J. R. E., Veyret D., “Experimental and Numerical Investigation of the Evaporation into Air of a Drop on a Heated Surface”, Chem. Eng. Res. Design, 82:4 (2004), 471–480 | DOI
[31] Gordeeva V. Yu., Lyushnin A. V., “Peculiarities of evaporation of a thin water layer in the presence of a solvable surfactant”, Tech. Phys., 59:5 (2014), 656–662 | DOI
[32] Lebedev-Stepanov P., Efimov S., Kobelev A., “Drying droplet deposited on poor wetting substrate: beyond the lubrication approximation”, J. Phys. Conf. Series, 925:1 (2017) | DOI
[33] Tarasevich Yu. Yu., Vodolazskaya I. V., Sakharova L. V., “Mathematical modeling of pattern formation caused by drying of colloidal film under a mask”, Eur. Phys. J. E., 39:2 (2016), 26 | DOI