Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2018_22_2_a7, author = {N. D. Verveiko and M. V. Egorov}, title = {Mathematical modeling of dynamic deformation of elasto-viscoplastic shells of finite lenght by a ray method}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {325--343}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a7/} }
TY - JOUR AU - N. D. Verveiko AU - M. V. Egorov TI - Mathematical modeling of dynamic deformation of elasto-viscoplastic shells of finite lenght by a ray method JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2018 SP - 325 EP - 343 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a7/ LA - ru ID - VSGTU_2018_22_2_a7 ER -
%0 Journal Article %A N. D. Verveiko %A M. V. Egorov %T Mathematical modeling of dynamic deformation of elasto-viscoplastic shells of finite lenght by a ray method %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2018 %P 325-343 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a7/ %G ru %F VSGTU_2018_22_2_a7
N. D. Verveiko; M. V. Egorov. Mathematical modeling of dynamic deformation of elasto-viscoplastic shells of finite lenght by a ray method. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 2, pp. 325-343. http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a7/
[1] Timoshenko S., Woinowsky–Krieger S., Theory of Plates and Shells, McGraw-Hill Book Comp., New York, 1959, 580+xiv pp.
[2] Sagomonian A. Ya., Volny napriazheniia v sploshnykh sredakh [Stress Waves in Continuous Media], Moscow State Univ., Moscow, 1985, 416 pp. (In Russian)
[3] Ivlev D. D., Teoriia ideal'noi plastichnosti [Theory of Ideal Plasticity], Nauka, Moscow, 1966, 332 pp. (In Russian) | MR
[4] Egorov M. V., “Dynamic deformation of an axisymmetric shell of rotation from an elasto-viscoplastic material near shock waves”, Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I. Ia. Iakovleva. Ser. Mekhanika predel'nogo sostoianiia, 2016, no. 2, 132–143 (In Russian)
[5] Verveiko N. D., Luchevaia teoriia uprugoviazkoplasticheskikh voln i voln gidroudara [Ray Theory of Elasto-Viscoplastic Waves and Hydrodynamic Waves], Voronezh State Univ., Voronezh, 1997, 204 pp. (In Russian)
[6] Marchuk G. I., Methods of Numerical Mathematics, Application of Mathematics, 2, New York, Springer-Verlag, 1982, xiii+510 pp. | DOI | MR | Zbl
[7] Sedov L. I., Similarity and Dimensional Methods in Mechanics, Academic Press, New York, London, 1959, 363 pp. | DOI | MR | MR | Zbl
[8] Samarskii A. A., Gulin A. V., Chislennye metody [Numerical Methods], Nauka, Moscow, 1989, 429 pp. (In Russian)
[9] Burenin A. A., Sevastyanov G. M., Shtuka V. I., “On the localization of discontinuities in calculations of incompressible elastic media”, Computational Continuum Mechanics, 9:4 (2016), 400–411 (In Russian) | DOI
[10] Gerasimenko Ye. A., Zavertan A. V., Ragozina V. Ye., “The use of near-front ray expansions in deformation dynamics”, J. App. Math. Mech., 73:2 (2009), 204–208 | DOI | Zbl
[11] Shtuka V. I., “The ray metod application for stain-stress state of elastic cylindrical layer with preliminary deformations definition”, Uchenye zapiski KnAGTU, 2017, no. 2, 40–44 (In Russian)
[12] Babicheva L. A., Bykovtsev G. I., Verveiko N. D., “Ray method of solving dynamic problems in elastic-viscoplastic media”, J. Appl. Math. Mech., 37:1 (1973), 132–141 | DOI | Zbl
[13] Egorov M. V., A program for numerical calculation of dynamic stress-strain state of the shell of revolution made of elasto-viscoplastic material when strikes the butt end: Certificate of state registration of the computer program, Registered no. 2017660609. 22.09.2017 (In Russian)