On the question of the correctness of inverse problems
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 2, pp. 269-292.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the rectangular domain, the initial-boundary value problem for the Helmholtz equation and its non-local modifications are studied and the inverse problems for finding its right-hand side are studied. The solutions of direct problems with nonlocal boundary conditions and inverse problems are constructed in explicit form as the sums of orthogonal series in the system of eigenfunctions of the one-dimensional Sturm–Liouville spectral problem. The corresponding uniqueness theorems for the solution of all set problems are proved. Sufficient conditions for boundary functions are established, which are guaranteed by the existence and stability theorems for the solution of the proposed new problem statements.
Keywords: Helmholtz equation, initial-boundary value problem, nonlocal problems, inverse problems, uniqueness, series, stability, integral equations.
Mots-clés : existence
@article{VSGTU_2018_22_2_a5,
     author = {K. B. Sabitov and N. V. Martem'yanova},
     title = {On the question of the correctness of inverse problems},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {269--292},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a5/}
}
TY  - JOUR
AU  - K. B. Sabitov
AU  - N. V. Martem'yanova
TI  - On the question of the correctness of inverse problems
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2018
SP  - 269
EP  - 292
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a5/
LA  - ru
ID  - VSGTU_2018_22_2_a5
ER  - 
%0 Journal Article
%A K. B. Sabitov
%A N. V. Martem'yanova
%T On the question of the correctness of inverse problems
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2018
%P 269-292
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a5/
%G ru
%F VSGTU_2018_22_2_a5
K. B. Sabitov; N. V. Martem'yanova. On the question of the correctness of inverse problems. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 2, pp. 269-292. http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a5/

[1] Sabitov K. B., Martem'yanova N. V., “A nonlocal inverse problem for a mixed-type equation”, Russian Math. (Iz. VUZ), 55:2 (2011), 61–74 | DOI | MR | Zbl

[2] Sabitov K. B., Khadzhi I. A., “The boundary-value problem for the Lavrent’ev-Bitsadze equation with unknown right-hand side”, Russian Math. (Iz. VUZ), 55:5 (2011), 35–42 | DOI | MR | Zbl

[3] Sabitov K. B., Martem'yanova N. V., “An inverse problem for an equation of elliptic-hyperbolic type with a nonlocal boundary condition”, Siberian Math. J., 53:3 (2012), 507–519 | DOI | MR | Zbl

[4] Sabitov K. B., Martem'yanova N. V., “The inverse problem for the Lavrent'ev–Bitsadze equation connected with the search of elements in the right-hand side”, Russian Math. (Iz. VUZ), 61:2 (2017), 36–48 | DOI | MR | Zbl

[5] Sabitov K. B., Martem'yanova N. V., “Nonlocal inverse problem for the equation with the Lavret'ev–Bitsadze operator in a rectangular domain”, Doklady AMAN, 15:2 (2013), 73–86 (In Russian)

[6] Sabitov K. B., Martemyanova N. V., “Nonlocal boundary value problem for the third order equation of mixed type”, Contemporary Analysis and Applied Mathematics, 3:2 (2015), 153–169 | DOI | MR

[7] Krajko A. N., Makarov V. E., Pudovikov D. E., “Construction of the bow wave through upstream computation of a supersonic flow by the method of characteristics”, Comput. Math. Math. Phys., 39:11 (1999), 1814–1819 | MR | Zbl

[8] Krajko A. N., P'yankov K. S., “Construction of airfoils and engine nacelles that are supercritical in a transonic perfect-gas flow”, Comput. Math. Math. Phys., 40:12 (2000), 1816–1829 | MR | Zbl

[9] Lavrent'ev M. M., Romanov V. G., Shishatskii S. P., Nekorrektnye zadachi matematicheskoy fiziki i analiza [Ill-posed Problems of Mathematical Physics and Analysis], Nauka, Moscow, 1980, 287 pp. (In Russian) | MR

[10] Lavrent'ev M. M., Reznitskaya K. G., Yakhno V. G., Odnomernye obratnye zadachi matematicheskoy fiziki [One-dimensional Inverse Problems of Mathematical Physics], Nauka, Novosibirsk, 1982, 88 pp. (In Russian) | MR

[11] Romanov V. G., Obratnye zadachi matematicheskoy fiziki [Inverse Problems of Mathematical Physics], Nauka, Moscow, 1984, 264 pp. (In Russian) | MR

[12] Romanov V. G., Kabanikhin S. I., Obratnye zadachi geoelektriki [Inverse Problems of Geoelectrics], Nauka, Moscow, 1991, 304 pp. (In Russian) | MR

[13] Denisov A. M., Elements of the Theory of Inverse Problems, Inverse and Ill-Posed Problems Series, 14, VSP Press, Utrecht, 1999, viii+272 pp. | DOI | MR

[14] Prilepko A. I., Orlovsky D. G., Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, Monographs and Textbooks in Pure and Applied Mathematics, 231, CRC Press, Boca Raton, 2000, xiv+709 pp. | DOI | MR

[15] Isakov V., Inverse problems for partial differential equations, Applied Mathematical Sciences, 127, Springer, New York, 2006, xiii+346 pp. | DOI | MR | Zbl

[16] Kabanikhin S. I., Inverse and Ill-posed Problems, Inverse and Ill-posed Problems. Theory and Applications, 55, VSP Press, Utrecht, 2011, xvi+459 pp. | DOI | MR

[17] Solov'ev V. V., “Inverse problems of source determination for the Poisson equation on the plane”, Comput. Math. Math. Phys., 44:5 (2004), 815–824 | MR | Zbl

[18] Solov'ev V. V., “Inverse problems for elliptic equations on the plane: I”, Differ. Equ., 42:8 (2006), 1170–1179 | DOI | MR | Zbl

[19] Solov'ev V. V., “Inverse problems for elliptic equations on the plane: II”, Differ. Equ., 43:1 (2007), 108–117 | DOI | MR | Zbl

[20] Solov'ev V. V., Inverse problems for equations of elliptic and parabolic type in Hölder spaces, Thesis, Doctor of Phys.-Math. Sci., Moscow, 2014

[21] Orlovsky D. G., “On an inverse problem for a second order differential equation in Banach space”, Differ. Equ., 25:6 (1989), 730–738 | MR | Zbl

[22] Orlovsky D. G., “Determination of a parameter of an evolution equation”, Differ. Equ., 26:9 (1990), 1201–1207 | MR | Zbl

[23] Orlovsky D. G., “Inverse Dirichlet problem for an equation of elliptic type”, Differ. Equ., 44:1 (2008), 124–134 | MR | Zbl

[24] Sabitov K. B., Uravneniia matematicheskoy fiziki [Equations of mathematical physics], Fizmatlit, Moscow, 2013 (In Russian)