Construction of Mikusi\'nski operational calculus based on the convolution algebra of distributions. Methods for solving mathematical physics problems
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 2, pp. 236-253.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new justification is given for the Mikusinsky operator calculus entirely based on the convolution algebra of generalized functions $D'_{+}$ and $D'_{-}$, as applied to the solution of linear partial differential equations with constant coefficients in the region $(x;t)\in \mathbb R (\mathbb R_{+})\times \mathbb R_{+}$. The mathematical apparatus used is based on the current state of the theory of generalized functions and its one of the main differences from the theory of Mikusinsky is that the resulting images are analytical functions of a complex variable. This allows us to legitimate the Laplace transform in the algebra $D'_{+} $ $( x\in \mathbb R_{+} )$, and apply the algebra to the region of negative values of the argument with the use of algebra $D'_{-}$. On classical examples of second-order equations of hyperbolic and parabolic type, in the case $x\in \mathbb R$, questions of the definition of fundamental solutions and the Cauchy problem are stated, and on the segment and the half-line $x\in \mathbb R_{+}$, non-stationary problems in the proper sense are considered. We derive general formulas for the Cauchy problem, as well as circuit of fundamental solutions definition by operator method. When considering non-stationary problems we introduce the compact proof of Duhamel theorem and derive the formulas which allow optimizing obtaining of solutions, including problems with discontinuous initial conditions. Examples of using series of convolution operators of generalized functions are given to find the originals. The proposed approach is compared with classical operational calculus based on the Laplace transform, and the theory of Mikusinsky, having the same ratios of the original image on the positive half-axis for normal functions allows us to consider the equations posed on the whole axis, to facilitate the obtaining and presentation of solutions. These examples illustrate the possibilities and give an assessment of the efficiency of the use of operator calculus.
Keywords: calculus of Mikusiński, space of distributions, Duhamel integral.
Mots-clés : convolution of distributions, convolution algebra, Laplace transform
@article{VSGTU_2018_22_2_a3,
     author = {I. L. Kogan},
     title = {Construction of {Mikusi\'nski} operational calculus based on the convolution algebra of distributions. {Methods} for solving mathematical physics problems},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {236--253},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a3/}
}
TY  - JOUR
AU  - I. L. Kogan
TI  - Construction of Mikusi\'nski operational calculus based on the convolution algebra of distributions. Methods for solving mathematical physics problems
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2018
SP  - 236
EP  - 253
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a3/
LA  - ru
ID  - VSGTU_2018_22_2_a3
ER  - 
%0 Journal Article
%A I. L. Kogan
%T Construction of Mikusi\'nski operational calculus based on the convolution algebra of distributions. Methods for solving mathematical physics problems
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2018
%P 236-253
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a3/
%G ru
%F VSGTU_2018_22_2_a3
I. L. Kogan. Construction of Mikusi\'nski operational calculus based on the convolution algebra of distributions. Methods for solving mathematical physics problems. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 2, pp. 236-253. http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a3/

[1] Courant R., Hilbert D., Methods of Mathematical Physics, v. 2, Partial Differential Equations, Interscience Publ., New York, 1962, xxii+830 pp. | MR | Zbl

[2] Doetsch G., Introduction to the Theory and Application of the Laplace Transformation, Springer-Verlag, Berlin, Heidelberg, 1974, viii+327 pp. | DOI | MR | Zbl

[3] Lavrent'ev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo [Methods for the theory of functions of a complex variable], Nauka, Moscow, 1987, 688 pp. (In Russian) | MR | Zbl

[4] Fedoryuk M. V., “Integral Transforms”, Analysis I. Integral Representations and Asymptotic Methods, Encyclopaedia of Mathematical Sciences, 13, ed. R. V. Gamkrelidze, Springer-Verlag, Berlin, Heidelberg, 1989, 193–232 | DOI | MR | Zbl

[5] Sharma J. N., Singh K., Partial Differential Equations for Engineers and Scientists, Narosa Publishing House, New Delhi, 2011, 354 pp. | Zbl

[6] Volkov I. K., Kanatnikov A. N., Integral'nye preobrazovaniia i operatsionnoe ischislenie [Integral transforms and operational calculus], Matematika v tekhnicheskom universitete [Mathematics in the Technical University], 11, eds. V. S. Zarubin, A. P. Krishchenko, Bauman Moscow State Techn. Univ., Moscow, 2015, 227 pp. (In Russian)

[7] Schwartz L., “Transformation de Laplace des distributions”, Meddel. Lunds Univ. Mat. Sem. Suppl.-band M. Riesz, 1952, 196–206 (In French) | MR | Zbl

[8] Lions J. L., “Supports dans la transformation de Laplace”, J. Anal. Math., 2 (1953), 369–380 (In French) | MR | Zbl

[9] Schwartz L., Méthodes mathématiques pour les sciences physiques. Avec le concours de Denise Huet, Enseign. des sciences, Hermann Cie, Paris, 1961, 392 pp. (In French) | MR | Zbl

[10] Vladimirov V. S., Obobshchennye funktsii v matematicheskoi fizike [Generalized Functions in Mathematical Physics], Nauka, Moscow, 1979, 319 pp. (In Russian) | MR | Zbl

[11] Vladimirov V. S., Uravneniia matematicheskoi fiziki [Equations of Mathematical Physics], Nauka, Moscow, 1981, 512 pp. (In Russian) | MR

[12] Brychkov Yu. A., Prudnikov A. P., Integral'nye preobrazovaniia obobshchennykh funktsii [Integral transformations of generalized functions], Nauka, Moscow, 1977, 287 pp. (In Russian) | MR | Zbl

[13] Kecs W., Teodorescu P. P., Application of the distribution theory in the mechanics, Editura Academiei Republicii Socialiste Romania, Bucuresti, 1970, 438 pp. (In Romanian) | MR | Zbl

[14] Mikusiński J., Operational calculus, Internat. Series of Monographs on Pure and Applied Mathematics, 8, Pergamon Press, New York, 1959, 495 pp. | MR | Zbl

[15] Kogan I. L., “Construction of Mikusinski operational calculus based on the convolution algebra of distributions. Basic provisions”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2012, no. 2(27), 44–52 (In Russian) | DOI | Zbl

[16] Kogan I. L., “Construction of Mikusinski operational calculus based on the convolution algebra of distributions. The theorems and the beginning of use”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2013, no. 3(32), 56–68 | DOI | Zbl

[17] Hörmander L., Linear partial differential operators, Die Grundlehren der mathematischen Wissenschaften, 116, Springer-Verlag, Berlin, Göttingen, Heidelberg, 1963, vii+285 pp. | MR | Zbl

[18] Gelfand I. M., Shilov G. E., Generalized functions, v. 1, Properties and operations, Academic Press, New York, London, 1964, xviii+423 pp. | MR | MR | Zbl | Zbl

[19] Korn G. A., Korn T. M., Mathematical handbook for scientists and engineers: definitions, theorems, and formulas for reference and review, Reprint with corrections of the 2nd revised and enlarged edition 1968., Dover Civil and Mechanical Engineering, Dover Publications, Mineola, NY, 2003, xvii+1130 pp. | MR | Zbl

[20] Kogan I. L., “Method of Duhamel Integral for Ordinary Differential Equations with Constant Coefficients in Respect to the Theory of Distributions”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2010, no. 1(20), 37–45 (In Russian) | DOI