Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2018_22_2_a3, author = {I. L. Kogan}, title = {Construction of {Mikusi\'nski} operational calculus based on the convolution algebra of distributions. {Methods} for solving mathematical physics problems}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {236--253}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a3/} }
TY - JOUR AU - I. L. Kogan TI - Construction of Mikusi\'nski operational calculus based on the convolution algebra of distributions. Methods for solving mathematical physics problems JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2018 SP - 236 EP - 253 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a3/ LA - ru ID - VSGTU_2018_22_2_a3 ER -
%0 Journal Article %A I. L. Kogan %T Construction of Mikusi\'nski operational calculus based on the convolution algebra of distributions. Methods for solving mathematical physics problems %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2018 %P 236-253 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a3/ %G ru %F VSGTU_2018_22_2_a3
I. L. Kogan. Construction of Mikusi\'nski operational calculus based on the convolution algebra of distributions. Methods for solving mathematical physics problems. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 2, pp. 236-253. http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a3/
[1] Courant R., Hilbert D., Methods of Mathematical Physics, v. 2, Partial Differential Equations, Interscience Publ., New York, 1962, xxii+830 pp. | MR | Zbl
[2] Doetsch G., Introduction to the Theory and Application of the Laplace Transformation, Springer-Verlag, Berlin, Heidelberg, 1974, viii+327 pp. | DOI | MR | Zbl
[3] Lavrent'ev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo [Methods for the theory of functions of a complex variable], Nauka, Moscow, 1987, 688 pp. (In Russian) | MR | Zbl
[4] Fedoryuk M. V., “Integral Transforms”, Analysis I. Integral Representations and Asymptotic Methods, Encyclopaedia of Mathematical Sciences, 13, ed. R. V. Gamkrelidze, Springer-Verlag, Berlin, Heidelberg, 1989, 193–232 | DOI | MR | Zbl
[5] Sharma J. N., Singh K., Partial Differential Equations for Engineers and Scientists, Narosa Publishing House, New Delhi, 2011, 354 pp. | Zbl
[6] Volkov I. K., Kanatnikov A. N., Integral'nye preobrazovaniia i operatsionnoe ischislenie [Integral transforms and operational calculus], Matematika v tekhnicheskom universitete [Mathematics in the Technical University], 11, eds. V. S. Zarubin, A. P. Krishchenko, Bauman Moscow State Techn. Univ., Moscow, 2015, 227 pp. (In Russian)
[7] Schwartz L., “Transformation de Laplace des distributions”, Meddel. Lunds Univ. Mat. Sem. Suppl.-band M. Riesz, 1952, 196–206 (In French) | MR | Zbl
[8] Lions J. L., “Supports dans la transformation de Laplace”, J. Anal. Math., 2 (1953), 369–380 (In French) | MR | Zbl
[9] Schwartz L., Méthodes mathématiques pour les sciences physiques. Avec le concours de Denise Huet, Enseign. des sciences, Hermann Cie, Paris, 1961, 392 pp. (In French) | MR | Zbl
[10] Vladimirov V. S., Obobshchennye funktsii v matematicheskoi fizike [Generalized Functions in Mathematical Physics], Nauka, Moscow, 1979, 319 pp. (In Russian) | MR | Zbl
[11] Vladimirov V. S., Uravneniia matematicheskoi fiziki [Equations of Mathematical Physics], Nauka, Moscow, 1981, 512 pp. (In Russian) | MR
[12] Brychkov Yu. A., Prudnikov A. P., Integral'nye preobrazovaniia obobshchennykh funktsii [Integral transformations of generalized functions], Nauka, Moscow, 1977, 287 pp. (In Russian) | MR | Zbl
[13] Kecs W., Teodorescu P. P., Application of the distribution theory in the mechanics, Editura Academiei Republicii Socialiste Romania, Bucuresti, 1970, 438 pp. (In Romanian) | MR | Zbl
[14] Mikusiński J., Operational calculus, Internat. Series of Monographs on Pure and Applied Mathematics, 8, Pergamon Press, New York, 1959, 495 pp. | MR | Zbl
[15] Kogan I. L., “Construction of Mikusinski operational calculus based on the convolution algebra of distributions. Basic provisions”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2012, no. 2(27), 44–52 (In Russian) | DOI | Zbl
[16] Kogan I. L., “Construction of Mikusinski operational calculus based on the convolution algebra of distributions. The theorems and the beginning of use”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2013, no. 3(32), 56–68 | DOI | Zbl
[17] Hörmander L., Linear partial differential operators, Die Grundlehren der mathematischen Wissenschaften, 116, Springer-Verlag, Berlin, Göttingen, Heidelberg, 1963, vii+285 pp. | MR | Zbl
[18] Gelfand I. M., Shilov G. E., Generalized functions, v. 1, Properties and operations, Academic Press, New York, London, 1964, xviii+423 pp. | MR | MR | Zbl | Zbl
[19] Korn G. A., Korn T. M., Mathematical handbook for scientists and engineers: definitions, theorems, and formulas for reference and review, Reprint with corrections of the 2nd revised and enlarged edition 1968., Dover Civil and Mechanical Engineering, Dover Publications, Mineola, NY, 2003, xvii+1130 pp. | MR | Zbl
[20] Kogan I. L., “Method of Duhamel Integral for Ordinary Differential Equations with Constant Coefficients in Respect to the Theory of Distributions”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2010, no. 1(20), 37–45 (In Russian) | DOI