A criterion for the unique solvability of the spectral Dirichlet problem for a class of multidimensional hyperbolic-parabolic equations
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 2, pp. 225-235.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the cylindrical domain of Euclidean space for one class of multidimensional hyperbolic parabolic equations the spectral Dirichlet problem with homogeneous boundary conditions is considered. The solution is sought in the form of an expansion in multidimensional spherical functions. The existence and uniqueness theorems of the solution are proved. Conditions for the unique solvability of the problem are obtained, which essentially depend on the height of the cylinder.
Keywords: multidimensional hyperbolic-parabolic equation, Dirichlet spectral problem, multidimensional cylindrical domain.
@article{VSGTU_2018_22_2_a2,
     author = {S. A. Aldashev},
     title = {A criterion for the unique solvability of the spectral {Dirichlet} problem for a class of multidimensional hyperbolic-parabolic equations},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {225--235},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a2/}
}
TY  - JOUR
AU  - S. A. Aldashev
TI  - A criterion for the unique solvability of the spectral Dirichlet problem for a class of multidimensional hyperbolic-parabolic equations
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2018
SP  - 225
EP  - 235
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a2/
LA  - ru
ID  - VSGTU_2018_22_2_a2
ER  - 
%0 Journal Article
%A S. A. Aldashev
%T A criterion for the unique solvability of the spectral Dirichlet problem for a class of multidimensional hyperbolic-parabolic equations
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2018
%P 225-235
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a2/
%G ru
%F VSGTU_2018_22_2_a2
S. A. Aldashev. A criterion for the unique solvability of the spectral Dirichlet problem for a class of multidimensional hyperbolic-parabolic equations. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 2, pp. 225-235. http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a2/

[1] Nakhushev A. M., Zadachi so smeshcheniem dlia uravneniia v chastnykh proizvodnykh [Problems with Shifts for Partial Differential Equations], Nauka, Moscow, 2006, 287 pp. (In Russian) | Zbl

[2] Vragov V. N., Kraevye zadachi dlia neklassicheskikh uravnenii matematicheskoi fiziki [Boundary-Value Problems for Nonclassical Equations of Mathematical Physics], Novosibirsk State Univ., Novosibirsk, 1983, 84 pp. (In Russian)

[3] Aldashev S. A, Kozhamkulov B. A, Akitai B. E, Dzhumadillaev K. N., “Dirichlet problems arising in the modeling of deformation and fracture processes of composites and their correctness”, Vestnik KazNPU. Ser. Fiz.-mat. nauki, 2014, no. 2(46), 128–133 (In Russian)

[4] Aldashev S. A., “Well-posedness of Dirichlet problem for one class of multi-dimensional hyperbolic-parabolic equations”, Ukr. Matem. Vestnik, 10:2 (2013), 147–157 (In Russian) | Zbl

[5] Aldashev S. A., “A criterion for the unique solvability of the spectral Dirichlet problem for a multidimensional hyperbolic-parabolic equation”, Equations of Mixed Type, Related Problems of Analysis and Informatics, Research Institute of PMA KBSC RAS, Nal'chik, 2012, 24–27 (In Russian)

[6] Mikhlin S. G., Multidimensional Singular Integrals and Integral Equations, International Series of Monographs on Pure and Applied Mathematics, 83, Pergamon Press, Oxford, London, etc., 1965, xii+255 pp. | DOI | MR | Zbl

[7] Kamke E., Spravochnik po obyknovennym differentsial'nym uravneniiam [Handbook on Ordinary Differential Equations], Nauka, Moscow, 1965, 703 pp. (In Russian)

[8] Erdélyi A. (ed.), Higher transcendental functions, v. II, Bateman Manuscript Project, California Institute of Technology, Robert E. Krieger Publ., Malabar, Florida, 1981, xviii+396 pp. | MR | Zbl

[9] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsional'nogo analiza [Elements of the Theory of Functions and Functional Analysis], Nauka, Moscow, 1976, 543 pp. (In Russian) | MR

[10] Aldashev S. A., “A criterion for the unique solvability of the Dirichlet spectral problem in a cylindrical domain for multidimensional hyperbolic equations with wave operator”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014, no. 3(36), 21–30 (In Russian) | DOI | Zbl

[11] Smirnow W. I., Course in higher mathematics, Part IV/2, H. Deutsch, Frankfurt am Main, 1995, 469 pp. (In German) | MR | MR | Zbl

[12] Friedman A., Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964, xiv+347 pp. | MR | Zbl