Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2018_22_2_a10, author = {\`E. Ya. Rapoport and A. Diligenskaya}, title = {Modal identification of a boundary input in~the~two-dimensional inverse heat conduction problem}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {380--394}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a10/} }
TY - JOUR AU - È. Ya. Rapoport AU - A. Diligenskaya TI - Modal identification of a boundary input in~the~two-dimensional inverse heat conduction problem JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2018 SP - 380 EP - 394 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a10/ LA - ru ID - VSGTU_2018_22_2_a10 ER -
%0 Journal Article %A È. Ya. Rapoport %A A. Diligenskaya %T Modal identification of a boundary input in~the~two-dimensional inverse heat conduction problem %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2018 %P 380-394 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a10/ %G ru %F VSGTU_2018_22_2_a10
È. Ya. Rapoport; A. Diligenskaya. Modal identification of a boundary input in~the~two-dimensional inverse heat conduction problem. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 2, pp. 380-394. http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a10/
[1] Özisik M. N., Orlande H. R. B., Inverse Heat Transfer: fundamentals and applications, Taylor and Francis, New York, 2000, xviii+330 pp. | DOI | MR
[2] Matsevityi Y. M. , Gaishun I. V., Borukhov V. T., Kostikov A. O., “Parametric and functional identification of thermal processes”, Journal of Mechanical Engineering, 14:3 (2011), 40–47 (In Russian)
[3] Alifanov O., “Inverse problems in identification and modeling of thermal processes: Theory and practice (Invited paper, Opening keynote lecture)”, Book of Abstracts, 8th International Conference on Inverse Problems in Engineering (ICIPE 2014), Institute of Thermal Technology Silesian University of Technology, Gliwice–Krakow, Poland, 2014, 3–4
[4] Alifanov O. M., Inverse Heat Transfer Problems, Springer, Berlin, Heidelberg, 1994, xii+348 pp. | DOI | Zbl
[5] Beck J. V., Blackwell B., St. Clair C. R., jr., Inverse Heat Conduction: Ill-Posed Problems, J. Wiley and Sons, New York, 1985, xvii+308 pp. | MR | Zbl
[6] Vatul'yan A. O., Obratnye zadachi v mekhanike deformiruemogo tverdogo tela [Inverse Problems in Mechanics of Deformable Solids], Fizmatlit, Moscow, 2007, 224 pp. (In Russian)
[7] Alifanov O., “Inverse problems in identification and modeling of thermal processes: Russian contributions”, Int. J. Numer. Methods Heat Fluid Flow, 27:3, 711–728 | DOI | MR
[8] Matsevityi Y. M., Kostikov A. O., Safonov N. A., Ganchin V. V., “To the solution of non-stationary nonlinear reverse problems of thermal conductivity”, Journal of mechanical engineering, 20:4 (2017), 15–23 (In Russian)
[9] Zhi Qian, Xiaoli Feng, “Numerical solution of a 2D inverse heat conduction problem”, Inverse Problems in Science and Engineering, 21:3 (2013), 467–484 | DOI | MR | Zbl
[10] Ching-yu Yang, Cha'o-Kuang Chen, “The boundary estimation in two-dimensional inverse heat conduction problems”, J. Phys. D. Appl. Phys., 29:2 (1996), 333 | DOI | MR
[11] “Regularized numerical solution of the nonlinear, two-dimensional, inverse heat-conduction problem”, J. Appl. Mech. Tech. Phys., 36:1 (1995), 98–104 | DOI | MR | Zbl
[12] Tikhonov A. N., Arsenin V. Ya., Solutions of ill-posed problems, Scripta Series in Mathematics, John Wiley Sons, New York, 1977, xiii+258 pp. | MR | MR | Zbl
[13] Ivanov V. K., Vasin V. V., Tanana V. P., Theory of linear ill-posed problems and its applications, Inverse and Ill-Posed Problems Series, 36, VSP, Utrecht, 2002, xiii+281 pp. | MR | MR | Zbl
[14] Tikhonov A. N., Goncharsky A. V., Stepanov V. V., Yagola A. G., Reguliariziruiushchie algoritmy i apriornaia informatsiia [Regularizing algorithms and a priori information], Nauka, Moscow, 1983, 200 pp. (In Russian) | MR
[15] Butkovskiy A. G., Metody upravleniia sistemami s raspredelennymi parametrami [Control methods for systems with distributed parameters], Nauka, Moscow, 1975, 568 pp. (In Russian) | MR
[16] Reinhardt H.-J., “A numerical method for the solution of two-dimensional inverse heat conduction problems”, Int. J. Numer. Methods Eng., 32:2 (1991), 363–383 | DOI | Zbl
[17] Kolesnik S. A., Formalev V. F., Kuznetsova E. L., “On inverse boundary thermal conductivity problem of recovery of heat fluxes to the boundaries of anisotropic bodies”, High Temperature, 53:1 (2015), 68–72 | DOI | DOI
[18] Koshlyakov N. S., Gliner E. B., Smirnov M. M., Differential Equations of Mathematical Physics, North-Holland Publ., Amsterdam, 1964, xvi+701 pp. | MR | MR | Zbl
[19] Rapoport E. Ya., “Open-loop controllability of multidimensional linear systems with distributed parameters”, J. Comput. Syst. Sci. Int., 54:2 (2015), 184–201 | DOI | DOI | MR | Zbl
[20] Rapoport E. Ya., Al'ternansnyy metod v prikladnykh zadachakh optimizatsii [Alternance method in applied optimization problems], Nauka, Moscow, 2000, 336 pp. (In Russian)