Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2018_22_2_a0, author = {M. Yu. Ignatiev}, title = {On an inverse {Regge} problem for the {Sturm--Liouville} operator with deviating argument}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {203--213}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a0/} }
TY - JOUR AU - M. Yu. Ignatiev TI - On an inverse Regge problem for the Sturm--Liouville operator with deviating argument JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2018 SP - 203 EP - 213 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a0/ LA - en ID - VSGTU_2018_22_2_a0 ER -
%0 Journal Article %A M. Yu. Ignatiev %T On an inverse Regge problem for the Sturm--Liouville operator with deviating argument %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2018 %P 203-213 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a0/ %G en %F VSGTU_2018_22_2_a0
M. Yu. Ignatiev. On an inverse Regge problem for the Sturm--Liouville operator with deviating argument. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 2, pp. 203-213. http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a0/
[1] Marchenko V. A., Sturm–Liouville operators and applications, Operator Theory: Advances and Applications, 22, Birkhäuser Verlag, Basel, Boston, Stuttgart, 1986, xi+367 pp. ; Russ. ed.: Naukova Dumka, Kiev, 1977, 393 pp. | MR | Zbl | Zbl
[2] Levitan B. M., Inverse Sturm–Liouville problems, VNU Science Press, Utrecht, 1987, x+240 pp. ; Russ. ed.: Nauka, Moscow, 1984, 246 pp. | MR | Zbl | Zbl
[3] Beals R., Deift P., Tomei C., Direct and inverse scattering on the line, Mathematical Surveys and Monographs, 28, American Mathematical Society, Providence, RI, 1988, xiii+209 pp. | MR | Zbl
[4] Yurko V. A., Introduction to the theory of universe spectral problems, Fizmatlit, Moscow, 2007, 384 pp. (In Russian) | Zbl
[5] Buterin S. A., “On an inverse spectral problem for a convolution integro-differential operator”, Result. Math., 50:3–4 (2007), 73–181 | DOI | MR
[6] Kuryshova Ju. V., “Inverse spectral problem for integro-differential operators”, Math. Notes, 81:6 (2007), 767–777 | DOI | MR | Zbl
[7] Bondarenko N. P., Buterin S. A., “On recovering the Dirac operator with an integral delay from the spectrum”, Result. Math., 71:3 (2017), 1521–1529 | DOI | MR | Zbl
[8] Freiling G., Yurko V. A., “Inverse problems for Sturm–Liouville differential operators with a constant delay”, Appl. Math. Lett., 25:11 (2012), 1999–2004 | DOI | MR | Zbl
[9] Vladičić V., Pikula M., “An inverse problem for Sturm–Liouville-type differential equation with a constant delay”, Sarajevo J. Math., 12(24):1 (2016), 83–88 | DOI | MR
[10] Buterin S. A., Pikula M., Yurko V. A., “Sturm–Liouville differential operators with deviating argument”, Tamkang J. Math., 48:1 (2017), 61–71 | DOI | MR | Zbl
[11] Yurko V. A., Buterin S. A., “An inverse spectral problem for Sturm–Liouville operators with a large constant delay”, Anal. Math. Phys., 2017 | DOI
[12] Gubreev G. M., Pivovarchik V. N., “Spectral analysis of the Regge problem with parameters”, Funct. Anal. Appl., 31:1 (1997), 54–57 | DOI | MR | Zbl
[13] Levin B. Ya., Distribution of zeros of entire functions, Translations of Mathematical Monographs, Amer. Math. Soc., 1964, viii+493 pp. ; Russ. ed.: Gostechizdat, Moscow, 1956, 632 pp. | MR | Zbl | Zbl
[14] Sedletskiy A. M., Classes of analytic Fourier transforms and exponential approximations, Fizmatlit, Moscow, 2005, 504 pp. (In Russian) | MR
[15] Gesztesy F., Simon B., “Inverse spectral analysis with partial information on the potential, II. The case of discrete spectrum”, Trans. Amer. Math. Soc., 352:6 (2000), 2765–2787 | DOI | MR | Zbl