Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2018_22_1_a8, author = {O. A. Koroleva}, title = {The equiconvergence theorem for an integral operator with piecewise constant kernel}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {184--197}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2018_22_1_a8/} }
TY - JOUR AU - O. A. Koroleva TI - The equiconvergence theorem for an integral operator with piecewise constant kernel JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2018 SP - 184 EP - 197 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2018_22_1_a8/ LA - ru ID - VSGTU_2018_22_1_a8 ER -
%0 Journal Article %A O. A. Koroleva %T The equiconvergence theorem for an integral operator with piecewise constant kernel %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2018 %P 184-197 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2018_22_1_a8/ %G ru %F VSGTU_2018_22_1_a8
O. A. Koroleva. The equiconvergence theorem for an integral operator with piecewise constant kernel. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 1, pp. 184-197. http://geodesic.mathdoc.fr/item/VSGTU_2018_22_1_a8/
[1] Stekloff W., “Sur les expressions asymptotiques de certaines fonctions, définies par les équations différentielles linéaires du second ordre, et leurs applications au problème du développement d'une fonction arbitraire en séries procédant suivant les-dites fonctions”, Communications de la Société mathématique de Kharkow. 2-ée série, 10 (1907), 97–199 (In French)
[2] Hobson E. W., “On a general convergence theorem, and the theory of the representation of a function by series of normal functions”, Lond. M. S. Proc. (2), 6:1 (1908), 349–395 | DOI | Zbl
[3] Haar A., “Zur Theorie der orthogonalen Funktionensysteme”, Math. Ann., 69:3 (1910), 331–371 (In German) | DOI | Zbl
[4] Tamarkin Ya. D., O nekotorykh obshchikh zadachakh teorii obyknovennykh lineinykh differentsial'nykh uravnenii [On some general problems in the theory of ordinary linear differential equations and on the expansion in series of arbitrary functions], Petrograd, 1917 (In Russian)
[5] Stone M. H., “A comparison of the series of Fourier and Birkhoff”, Trans. Amer. Math. Soc., 28:4 (1926), 695–761 | DOI
[6] Naimark M. A., Lineinye differentsial'nye operatory [Linear differential operators], Nauka, Moscow, 1969, 528 pp. (In Russian) | Zbl
[7] Birkhoff G. D., “On the asymptotic character of the solutions of certain linear differential equations containing a parameter”, Trans. Amer. Math. Soc., 9:2 (1908), 219–231 | DOI
[8] Birkhoff G. D., “Boundary value and expansion problems of ordinary differential equations”, Trans Amer. Math. Soc., 9:4 (1908), 373–397 | DOI
[9] Khromov A. P., “Equiconvergence theorems for integrodifferential and integral operators”, Math. USSR-Sb., 42:3 (1982), 331–355 | DOI | MR | Zbl
[10] Khromov A. P., “Integral operators with kernels that are discontinuous on broken lines”, Sb. Math., 197:11 (2006), 1669–1696 | DOI | DOI | MR | Zbl | Zbl
[11] Rasulov M. L., Methods of contour integration, North-Holland Series in Applied Mathematics and Mechanics, 3, North-Holland Publishing Company, Amsterdam, 1967, xiv+439 pp. | Zbl | Zbl
[12] Koroleva O. A., Khromov A. P., “Integral operator with kernel having jumps on broken lines”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 12:2 (2012), 6–13 (In Russian) | Zbl