Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2018_22_1_a7, author = {V. N. Maklakov and Ya. G. Stelmakh}, title = {Numerical integration by the matrix method of boundary value problems for linear inhomogeneous ordinary differential equations of the third order with variable coefficients}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {153--183}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2018_22_1_a7/} }
TY - JOUR AU - V. N. Maklakov AU - Ya. G. Stelmakh TI - Numerical integration by the matrix method of boundary value problems for linear inhomogeneous ordinary differential equations of the third order with variable coefficients JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2018 SP - 153 EP - 183 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2018_22_1_a7/ LA - ru ID - VSGTU_2018_22_1_a7 ER -
%0 Journal Article %A V. N. Maklakov %A Ya. G. Stelmakh %T Numerical integration by the matrix method of boundary value problems for linear inhomogeneous ordinary differential equations of the third order with variable coefficients %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2018 %P 153-183 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2018_22_1_a7/ %G ru %F VSGTU_2018_22_1_a7
V. N. Maklakov; Ya. G. Stelmakh. Numerical integration by the matrix method of boundary value problems for linear inhomogeneous ordinary differential equations of the third order with variable coefficients. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 1, pp. 153-183. http://geodesic.mathdoc.fr/item/VSGTU_2018_22_1_a7/
[1] Radchenko V. P., Usov A. A., “Modified grid method for solving linear differential equation equipped with variable coefficients based on Taylor series”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2008, no. 2(17), 60–65 (In Russian) | DOI
[2] Keller H. B., “Accurate Difference Methods for Nonlinear Two-point Boundary Value Problems”, SIAM J. Numer. Anal., 11:2 (1974), 305–320 | DOI | MR | Zbl
[3] Lentini M., Pereyra V., “A Variable Order Finite Difference Method for Nonlinear Multipoint Boundary Value Problems”, Math. Comp., 28:128 (1974), 981–1003 | DOI | MR | Zbl
[4] Keller H. B., “Numerical Solution of Boundary Value Problems for Ordinary Differential equations: Survey and Some Resent Results on Difference Methods”, Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations, Part I: Survey Lectures, ed. A. K. Aziz, Academic Press, New York, 1975, 27–88 | DOI | MR
[5] Godunov S. K., Ryabenki V. S., Theory of Difference Schemes: An Introduction, Wiley, New York, 1964, xii+289 pp. | MR
[6] Formaleev V. F., Reviznikov D. L., Chislennye metody [Numerical Methods], Fizmatlit, Moscow, 2004, 400 pp. (In Russian)
[7] Samarskii A. A., Teoriia raznostnykh skhem [The Theory of Difference Schemes], Nauka, Moscow, 1977, 656 pp. (In Russian) | MR
[8] Samarskii A. A., Gulin A. V., Chislennye metody [Numerical methods], Nauka, Moscow, 1973, 432 pp. (In Russian) | MR
[9] Samarskii A. A., Gulin A. V., Ustoichivost' raznostnykh skhem [The stability of difference schemes], Nauka, Moscow, 1973, 416 pp. (In Russian) | MR
[10] Boutayeb A., Chetouani A., “Global Extrapolations Of Numerical Methods For Solving A Parabolic Problem With Non Local Boundary Conditions”, International Journal of Computer Mathematics, 80:6 (2003), 789–797 | DOI | MR | Zbl
[11] Boutayeb A., Chetouani A., “A Numerical Comparison of Different Methods Applied to the Solution of Problems with Non Local Boundary Conditions”, Applied Mathematical Sciences, 1:44 (2007), 2173–2185 http://www.m-hikari.com/ams/ams-password-2007/ams-password41-44-2007/boutayebAMS41-44-2007.pdf | MR
[12] Maklakov V. N., “Estimation of the Order of the Matrix Method Approximation of Numerical Integration of Boundary-Value Problems for Inhomogeneous Linear Ordinary Differential Equations of the Second Order”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], no. 3(36), 143–160 (In Russian) | DOI
[13] Maklakov V. N., “Convergence of the matrix method of numerical integration of the boundary value problems for linear nonhomogeneous ordinary differential second order equations with variable coefficients”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:3 (2015), 559–577 (In Russian) | DOI | Zbl
[14] Fichtenholz G. M., Differential- und Integralrechnung. I [Differential and integral calculus. I], Hochschulbücher für Mathematik [University Books for Mathematics], 61, VEB Deutscher Verlag der Wissenschaften, Berlin, 1986, xiv+572 pp. (In German) | MR | Zbl
[15] Kurosh A., Higher algebra, Mir Publ., Moscow, 1972, 428 pp. | MR | MR | Zbl
[16] Zaks L., Statisticheskoe otsenivanie [Statistical estimation], Statistika, Moscow, 1976, 598 pp. (In Russian) | MR
[17] Kamke E., Spravochnik po obyknovennym differentsial'nym uravneniiam [Manual of ordinary differential equations], Nauka, Moscow, 1976, 576 pp. (In Russian) | MR
[18] Maklakov V. N., “The evaluation of the order of approximation of the matrix method for numerical integration of the boundary value problems for systems of linear non-homogeneous ordinary differential equations of the second order with variable coefficients. Message 1. Boundary value problems with boundary conditions of the first kind”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:3 (2016), 389–409 (In Russian) | DOI | Zbl