The use of piecewise linear plastic potentials in the nonstationary theory of temperature stresses
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 1, pp. 23-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under the conditions of a piecewise linear plastic potential defining in the space of principal stresses the plasticity condition for the maximum reduced tangential stresses, a solution is obtained for a one-dimensional quasistatic problem of the theory of temperature stresses about the local heating of a circular plate made of an ideal elastoplastic material. The yield point is assumed to be temperature dependent. A comparison is made in the distribution of the current and residual stresses during heating and cooling of the plate metal obtained both with the dependence of the elastic models on the temperature, and without taking this dependence into account. It is shown that, depending on the rate and temperature of heating, the regime of plastic flow can change under the transition of stressed states from one face of the loading surface to another. In this case, the possibility of an inclined prism of fluidity on the edge is excluded, the surface of which in the space of principal stresses is the loading surface.
Keywords: elasticity, plasticity, temperature stresses, piecewise linear loading surfaces, the temperature dependence of elastic constants and the yield point.
@article{VSGTU_2018_22_1_a2,
     author = {A. A. Burenin and A. V. Tkacheva and G. A. Scherbatyuk},
     title = {The use of piecewise linear plastic potentials in the nonstationary theory of temperature stresses},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {23--39},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2018_22_1_a2/}
}
TY  - JOUR
AU  - A. A. Burenin
AU  - A. V. Tkacheva
AU  - G. A. Scherbatyuk
TI  - The use of piecewise linear plastic potentials in the nonstationary theory of temperature stresses
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2018
SP  - 23
EP  - 39
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2018_22_1_a2/
LA  - ru
ID  - VSGTU_2018_22_1_a2
ER  - 
%0 Journal Article
%A A. A. Burenin
%A A. V. Tkacheva
%A G. A. Scherbatyuk
%T The use of piecewise linear plastic potentials in the nonstationary theory of temperature stresses
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2018
%P 23-39
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2018_22_1_a2/
%G ru
%F VSGTU_2018_22_1_a2
A. A. Burenin; A. V. Tkacheva; G. A. Scherbatyuk. The use of piecewise linear plastic potentials in the nonstationary theory of temperature stresses. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 1, pp. 23-39. http://geodesic.mathdoc.fr/item/VSGTU_2018_22_1_a2/

[1] Bland D. R., “Elastoplastic thick-walled tubes of work-hardening material subject to internal and external pressures and to temperature gradients”, J. Mech. Phys. Solids, 4:1 (1956), 209–229 | DOI | MR | Zbl

[2] Perzyna P., Sawczuk A., “Problems of thermoplasticity”, Nucl. Engng. Des., 24:1 (1973), 1—55 | DOI | MR

[3] Lippmann H., “The effect of a temperature cycle on the stress distribution in a shrink fit”, Jnt. J. Plast., 8:5 (1992), 567–582 | DOI

[4] Bengeri M., Mack W., “The influence of the temperature dependence of the yield stress on the stress distribution in a thermally assembled elastic-plastic shrink fit”, Acta Mechanica, 103:1–4 (1994), 243–257 | DOI | Zbl

[5] Kovács Á., “Residual stresses in thermally loaded shrink fits”, Periodica Polytechnica, Mech. Engng., 40:2 (1996), 103–112

[6] Kovtanjuk L. V., “The modelling of finite elastic-plastic deformation in non-isothermal case”, Dal'nevost. Mat. Zh., 5:1 (2004), 110–120 (In Russian)

[7] Aleksandrov S. E., Lomakin E. V., Dzeng I.-R., “Solution of the thermoelastoplastic problem for a thin disk of plastically compressible material subjected to thermal loading”, Dokl. Phys., 57:3 (2012), 136–139 | DOI | MR

[8] Aleksandrov S. E., Lyamina E. A., Novozhilova O. V., “The influence of the relationship between yield strength and temperature on the stress state in a thin hollow disk”, Journal of Machinery Manufacture and Reliability, 42:3 (2013), 214–218 | DOI

[9] Burenin A. A., Dats E. P., Tkacheva A. V., “On the modeling of shrink-fitting technology”, J. Appl. Ind. Math., 8:4 (2014), 493–499 | DOI | MR | Zbl

[10] Dats E. P., Tkacheva A. V., Shport R. V., “Assembly of a “Ring-in-Ring” Structure by a Shrink Fit”, Vestnik Chuvash. Gos. Ped. Univ. im I. Ya. Yakovleva. Ser. Mekh. Pred. Sost., 2014, no. 4(22), 225–235 (In Russian) | MR

[11] Burenin A. A., Dats E. P., Murashkin E. V., “Formation of the residual stress field under local thermal actions”, Mech. Solids, 49:2 (2014), 218–224 | DOI | MR

[12] Burenin A. A., Tkacheva A. V., Scherbatyuk G. A., “On the calculation of unsteady thermal stresses in elastoplastic solids”, Computational mechanics, 10:3 (2017), 245–259 (In Russian) | DOI

[13] Tokiy N. V., Tokiy V. V., Pilipenko A. N., Pismenova N. E., “Temperature dependence of elastic moduli of submicrocrystalline copper”, Phys. Solid State, 56:5 (2014), 1002–1005 | DOI

[14] Nadai A., Theory of Flow and Fracture of Solids, v. 2, McGraw-Hill Book Company, Inc., New York, 1963, xviii+705 pp.

[15] Bykovtsev G. I., Ivlev D. D., Teoriia plastichnosti [Theory of plasticity], Dalnauka, Vladivostok, 1998, 528 pp. (In Russian)

[16] Ishlinskii A. Yu., Ivlev D. D., Matematicheskaia teoriia plastichnosti [Mathematical theory of plasticity], Fizmatlit, Moscow, 2001, 704 pp. (In Russian)

[17] Samsonov G. V., Svoistva elementov. Ch. 2. Khimicheskie svoistva [Properties of elements. Part 2. Chemical properties], Metallurgiya, Moscow, 1976, 384 pp. (In Russian)