Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2018_22_1_a2, author = {A. A. Burenin and A. V. Tkacheva and G. A. Scherbatyuk}, title = {The use of piecewise linear plastic potentials in the nonstationary theory of temperature stresses}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {23--39}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2018_22_1_a2/} }
TY - JOUR AU - A. A. Burenin AU - A. V. Tkacheva AU - G. A. Scherbatyuk TI - The use of piecewise linear plastic potentials in the nonstationary theory of temperature stresses JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2018 SP - 23 EP - 39 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2018_22_1_a2/ LA - ru ID - VSGTU_2018_22_1_a2 ER -
%0 Journal Article %A A. A. Burenin %A A. V. Tkacheva %A G. A. Scherbatyuk %T The use of piecewise linear plastic potentials in the nonstationary theory of temperature stresses %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2018 %P 23-39 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2018_22_1_a2/ %G ru %F VSGTU_2018_22_1_a2
A. A. Burenin; A. V. Tkacheva; G. A. Scherbatyuk. The use of piecewise linear plastic potentials in the nonstationary theory of temperature stresses. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 1, pp. 23-39. http://geodesic.mathdoc.fr/item/VSGTU_2018_22_1_a2/
[1] Bland D. R., “Elastoplastic thick-walled tubes of work-hardening material subject to internal and external pressures and to temperature gradients”, J. Mech. Phys. Solids, 4:1 (1956), 209–229 | DOI | MR | Zbl
[2] Perzyna P., Sawczuk A., “Problems of thermoplasticity”, Nucl. Engng. Des., 24:1 (1973), 1—55 | DOI | MR
[3] Lippmann H., “The effect of a temperature cycle on the stress distribution in a shrink fit”, Jnt. J. Plast., 8:5 (1992), 567–582 | DOI
[4] Bengeri M., Mack W., “The influence of the temperature dependence of the yield stress on the stress distribution in a thermally assembled elastic-plastic shrink fit”, Acta Mechanica, 103:1–4 (1994), 243–257 | DOI | Zbl
[5] Kovács Á., “Residual stresses in thermally loaded shrink fits”, Periodica Polytechnica, Mech. Engng., 40:2 (1996), 103–112
[6] Kovtanjuk L. V., “The modelling of finite elastic-plastic deformation in non-isothermal case”, Dal'nevost. Mat. Zh., 5:1 (2004), 110–120 (In Russian)
[7] Aleksandrov S. E., Lomakin E. V., Dzeng I.-R., “Solution of the thermoelastoplastic problem for a thin disk of plastically compressible material subjected to thermal loading”, Dokl. Phys., 57:3 (2012), 136–139 | DOI | MR
[8] Aleksandrov S. E., Lyamina E. A., Novozhilova O. V., “The influence of the relationship between yield strength and temperature on the stress state in a thin hollow disk”, Journal of Machinery Manufacture and Reliability, 42:3 (2013), 214–218 | DOI
[9] Burenin A. A., Dats E. P., Tkacheva A. V., “On the modeling of shrink-fitting technology”, J. Appl. Ind. Math., 8:4 (2014), 493–499 | DOI | MR | Zbl
[10] Dats E. P., Tkacheva A. V., Shport R. V., “Assembly of a “Ring-in-Ring” Structure by a Shrink Fit”, Vestnik Chuvash. Gos. Ped. Univ. im I. Ya. Yakovleva. Ser. Mekh. Pred. Sost., 2014, no. 4(22), 225–235 (In Russian) | MR
[11] Burenin A. A., Dats E. P., Murashkin E. V., “Formation of the residual stress field under local thermal actions”, Mech. Solids, 49:2 (2014), 218–224 | DOI | MR
[12] Burenin A. A., Tkacheva A. V., Scherbatyuk G. A., “On the calculation of unsteady thermal stresses in elastoplastic solids”, Computational mechanics, 10:3 (2017), 245–259 (In Russian) | DOI
[13] Tokiy N. V., Tokiy V. V., Pilipenko A. N., Pismenova N. E., “Temperature dependence of elastic moduli of submicrocrystalline copper”, Phys. Solid State, 56:5 (2014), 1002–1005 | DOI
[14] Nadai A., Theory of Flow and Fracture of Solids, v. 2, McGraw-Hill Book Company, Inc., New York, 1963, xviii+705 pp.
[15] Bykovtsev G. I., Ivlev D. D., Teoriia plastichnosti [Theory of plasticity], Dalnauka, Vladivostok, 1998, 528 pp. (In Russian)
[16] Ishlinskii A. Yu., Ivlev D. D., Matematicheskaia teoriia plastichnosti [Mathematical theory of plasticity], Fizmatlit, Moscow, 2001, 704 pp. (In Russian)
[17] Samsonov G. V., Svoistva elementov. Ch. 2. Khimicheskie svoistva [Properties of elements. Part 2. Chemical properties], Metallurgiya, Moscow, 1976, 384 pp. (In Russian)