The Cauchy problem for a system of the hyperbolic differential equations of the $n$-th order with the nonmultiple characteristics
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 4, pp. 752-759.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the Cauchy problem is considered for the hyperbolic differential equation of the $n$-th order with the nonmultiple characteristics. The regular solution of the Cauchy problem for the hyperbolic differential equation of the $n$-th order with the nonmultiple characteristics is considered. In the paper the solution of the Cauchy problem for the system of the hyperbolic differential equations of the $n$-th order with the nonmultiple characteristics is considered. The existence and uniqueness theorem for the regular solution of the Cauchy problem for the system of the hyperbolic differential equations of the $n$-th order with the nonmultiple characteristics is considered as the result of the research.
Keywords: $n$-th order hyperbolic differential equation, system of the hyperbolic differential equations of the $n$-th order, nonmultiple characteristics, method of the general solutions, Cauchy problem
Mots-clés : D'Alembert formula.
@article{VSGTU_2017_21_4_a9,
     author = {A. A. Andreev and J. O. Yakovleva},
     title = {The {Cauchy} problem for a system of the hyperbolic differential equations of the $n$-th order with the nonmultiple characteristics},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {752--759},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2017_21_4_a9/}
}
TY  - JOUR
AU  - A. A. Andreev
AU  - J. O. Yakovleva
TI  - The Cauchy problem for a system of the hyperbolic differential equations of the $n$-th order with the nonmultiple characteristics
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2017
SP  - 752
EP  - 759
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2017_21_4_a9/
LA  - ru
ID  - VSGTU_2017_21_4_a9
ER  - 
%0 Journal Article
%A A. A. Andreev
%A J. O. Yakovleva
%T The Cauchy problem for a system of the hyperbolic differential equations of the $n$-th order with the nonmultiple characteristics
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2017
%P 752-759
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2017_21_4_a9/
%G ru
%F VSGTU_2017_21_4_a9
A. A. Andreev; J. O. Yakovleva. The Cauchy problem for a system of the hyperbolic differential equations of the $n$-th order with the nonmultiple characteristics. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 4, pp. 752-759. http://geodesic.mathdoc.fr/item/VSGTU_2017_21_4_a9/

[1] Ali Raeisian S. M., “Effective Solution of Riemann Problem for Fifth Order Improperly Elliptic Equation on a Rectangle”, AJCM, 2:4 (2012), 282–286 | DOI

[2] Bitsadze A. V., Uravneniia matematicheskoi fiziki [Equations of mathematical physics], Nauka, Moscow, 1982, 336 pp. (In Russian) | MR | Zbl

[3] Kinoshita T., “Gevrey Wellposedness of the Cauchy Problem for the Hyperbolic Equations of Third Order with Coefficients Depending Only on Time”, Publications of the Research Institute for Mathematical Sciences, 34:3 (1998), 249–270 | DOI | Zbl

[4] Nikolov A., Popivanov N., “Singular solutions to Protter's problem for (3+1)-D degenerate wave equation” (8–13 June 2012; Sozopol, Bulgaria), AIP Conf. Proc., 1497, 2012, 233–238 | DOI

[5] Rieman B., “Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite (Aus dem achten Bande der Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen. 1860.)”, Bernard Riemann's Gesammelte mathematische Werke und wissenschaftlicher Nachlass, eds. R. Dedekind, H. M. Weber, BiblioLife, United States, 2009, 145–164 (In German) | DOI

[6] Zhegalov V. I., Mironov A. N., Differentsial'nye uravneniia so starshimi chastnymi proizvodnymi [Differential equations with highest partial derivatives], Kazanskoe matematicheskoe obshchestvo, Kazan', 2001, 226 pp. (In Russian) | Zbl

[7] Muskhelishvili N. I., Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti [Some basic problems of the mathematical theory of elasticity], Nauka, Moscow, 1966, 707 pp. (In Russian) | MR | Zbl

[8] Andreev A. A., Yakovleva J. O., “The Cauchy problem for a general hyperbolic differential equation of the $n$-th order with the nonmultiple characteristics”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:2 (2016), 241–248 (In Russian) | DOI | Zbl

[9] Petrovsky I. G., Izbrannye trudy. Sistemy uravnenii s chastnymi proizvodnymi. Algebraicheskaia geometriia [Selected works. Systems of partial differential equations. Algebraic geometry], Nauka, Moscow, 1986, 504 pp. | MR | Zbl

[10] Korzyuk V. I., Cheb E. S., Le Thi Thu, “Solution of the mixed problem for the biwave equation by the method of characteristics”, Tr. Inst. Mat., 18:2 (2010), 36–54 (In Russian) | Zbl

[11] Yakovleva J. O., “The analogue of D'Alembert formula for hyperbolic differential equation of the third order with nonmultiple characteristics”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2012, no. 1(26), 247–250 (In Russian) | DOI

[12] Andreev A. A., Yakovleva J. O., “Cauchy Problem For the System Of the General Hyperbolic Differential Equations Of the Forth Order With Nonmultiple Characteristics”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014, no. 4(37), 7–15 (In Russian) | DOI | Zbl

[13] Andreev A. A., Yakovleva J. O., “The Characteristic Problem for one Hyperbolic Differentional Equation of the Third Order with Nonmultiple Characteristics”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 13:1(2) (2013), 3–6 (In Russian) | Zbl

[14] Tikhonov A. N., Samarskii A. A., Uravneniia matematicheskoi fiziki [Equations of Mathematical Physics], Nauka, Moscow, 1972, 736 pp. (In Russian) | MR | Zbl

[15] Bellman R., Introduction to matrix analysis, 2nd ed., Reprint of the 1970 Orig., Classics in Applied Mathematics, 19, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997, xxviii+403 pp. | MR | Zbl

[16] Gantmakher F. R., Teoriia matrits [Theory of matrices], Nauka, Moscow, 1988, 549 pp. (In Russian) | MR | Zbl

[17] Holmgren E., “Sur les systèmes linéaires aux dérivées partielles du premier ordre deux variables indépendantes à caractéristiques réelles et distinetes”, Arkiv f. Mat., Astr. och Fys., 5:1 (1909), 13 pp. (In Swedish) | Zbl