The Dirichlet problem for a three-dimensional equation of mixed type with three singular coefficients
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 4, pp. 665-683.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Dirichlet problem in a parallelepiped for a three-dimensional equation of mixed type with three singular coefficients. Separation of variables with Fourier series and spectral analysis are used to investigate this problem. Two one-dimensional spectral problems are obtained for the possed problem using the Fourier method. On the basis of the completeness property of the eigenfunction systems of these problems, the uniqueness theorem is proved. The solution of the problem is constructed as the sum of a double Fourier–Bessel series. In justification of the uniform convergence of the series constructed, asymptotic estimates of the Bessel functions of the real and imaginary argument are used. On their basis, estimates are obtained for each member of the series. The estimates obtained made it possible to prove the convergence of the series and its derivatives up to the second order inclusive, and also the existence theorem in the class of regular solutions.
Keywords: Dirichlet problem, mixed-type equations, spectral method, uniqueness of solution
Mots-clés : existence of solution.
@article{VSGTU_2017_21_4_a4,
     author = {A. K. Urinov and K. T. Karimov},
     title = {The {Dirichlet} problem for a three-dimensional equation of mixed type with three singular coefficients},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {665--683},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2017_21_4_a4/}
}
TY  - JOUR
AU  - A. K. Urinov
AU  - K. T. Karimov
TI  - The Dirichlet problem for a three-dimensional equation of mixed type with three singular coefficients
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2017
SP  - 665
EP  - 683
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2017_21_4_a4/
LA  - ru
ID  - VSGTU_2017_21_4_a4
ER  - 
%0 Journal Article
%A A. K. Urinov
%A K. T. Karimov
%T The Dirichlet problem for a three-dimensional equation of mixed type with three singular coefficients
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2017
%P 665-683
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2017_21_4_a4/
%G ru
%F VSGTU_2017_21_4_a4
A. K. Urinov; K. T. Karimov. The Dirichlet problem for a three-dimensional equation of mixed type with three singular coefficients. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 4, pp. 665-683. http://geodesic.mathdoc.fr/item/VSGTU_2017_21_4_a4/

[1] Frankl F., “To the theory of the Laval nozzle”, Izv. Akad. Nauk SSSR Ser. Mat., 9:2 (1945), 121–143 (In Russian) | MR | Zbl

[2] Bitsadze A. V., “The incorrectness of the Dirichlet problem for equations of mixed type”, Dokl. Akad. Nauk SSSR, 122:2 (1953), 167–170 (In Russian) | MR

[3] Khachev M. M., Pervaia kraevaia zadacha dlia lineinykh uravnenii smeshannogo tipa [The First Boundary Value Problem for Linear Equations of Mixed Type], Elbrus, Nalchik, 1998, 168 pp. (In Russian)

[4] Soldatov A. P., “On the theory of mixed-type equations”, J. Math. Sci., 129:1 (2005), 3670–3679 | DOI | MR | Zbl

[5] Sabitov K. B., “The Dirichlet problem for equations of mixed type in a rectangular domain”, Dokl. Math., 75:2 (2007), 193–196 | MR | Zbl

[6] Sabitov K. B., Suleimanova A. Kh., “The Dirichlet problem for a mixed-type equation of the second kind in a rectangular domain”, Russian Math. (Iz. VUZ), 51:4 (2007), 42–50 | DOI | MR | Zbl

[7] Sabitov K. B., Vagapova E. V., “Dirichlet problem for an equation of mixed type with two degeneration lines in a rectangular domain”, Differ. Equ., 49:1 (2013), 68–78 | DOI | MR | Zbl

[8] Khairullin R. S., “On the Dirichlet problem for a mixed-type equation of the second kind with strong degeneration”, Differ. Equ., 49:4 (2013), 510–516 | DOI | DOI | MR | Zbl

[9] Safina R. M., “Dirichlet problem for Pulkin's equation in a rectangular domain”, Vestnik SamGU. Estestvenno-Nauchnaya Ser., 2014, no. 10(121), 91–101 (In Russian) | Zbl

[10] Zhang K, Li Y., “On Dirichlet problem of Tricomi-type equation in rectangular domains”, J. Nanjing Norm. Univ., Nat. Sci. Ed., 39:1 (2016), 29–35 | DOI | MR | Zbl

[11] Nakhushev A. M., “A uniqueness condition of the Dirichlet problem for an equation of mixed type in a cylindrical domain”, Differ. Uravn., 6:1 (1970), 190–191 (In Russian) | MR | Zbl

[12] Safina R. M., “The Dirichlet Problem with Axial Symmetry for a Mixed $B$-elliptic–$B$-hyperbolic Type with Characteristic Degeneration”, Vestnik Tatarskogo Gumanitarno-Pedagogicheskogo Universiteta, 2010, no. 4(22), 63–69 (In Russian)

[13] Aldashev S. A., “A criterion for the unique solvability of the dirichlet spectral problem in a cylindrical domain for a multidimensional Lavrent'ev–Bitsadze equation”, Russian Math. (Iz. VUZ), 55:4 (2011), 1–4 | DOI | MR | Zbl

[14] Safina R. M., “A criterion of uniqueness of a solution to the Dirichlet problem with the axial symmetry for the three-dimensional mixed type equation with the Bessel operator”, Russian Math. (Iz. VUZ), 58:6 (2014), 69–73 | DOI | MR | Zbl

[15] Watson G. N., A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1922 | MR | Zbl

[16] Kuznetsov D. S., Spetsial'nye funktsii [Special Functions], Vysshaia shkola, Moscow, 1962, 448 pp. (In Russian) | MR

[17] Olver F. W. J., “Introduction to Asymptotic Analysis”, Introduction to Asymptotics and Special Functions, Academic Press, Inc., New York, 1974, 1–30 | DOI | MR

[18] Fikhtengol'ts G. M., Kurs differentsial'nogo i integral'nogo ischisleniia [Course of Differential and Integral Calculus], v. 2, Nauka, Moscow, 1969, 800 pp. (In Russian)