Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2017_21_4_a3, author = {R. Kh. Makaova}, title = {A boundary value problem for a third order hyperbolic equation with degeneration of order inside the domain}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {651--664}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2017_21_4_a3/} }
TY - JOUR AU - R. Kh. Makaova TI - A boundary value problem for a third order hyperbolic equation with degeneration of order inside the domain JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2017 SP - 651 EP - 664 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2017_21_4_a3/ LA - ru ID - VSGTU_2017_21_4_a3 ER -
%0 Journal Article %A R. Kh. Makaova %T A boundary value problem for a third order hyperbolic equation with degeneration of order inside the domain %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2017 %P 651-664 %V 21 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2017_21_4_a3/ %G ru %F VSGTU_2017_21_4_a3
R. Kh. Makaova. A boundary value problem for a third order hyperbolic equation with degeneration of order inside the domain. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 4, pp. 651-664. http://geodesic.mathdoc.fr/item/VSGTU_2017_21_4_a3/
[1] Hallaire M., “Potential efficace de l'eau dans le sol en régime de dessèchement”, , , Publ. no. 62 (August 1963), Gentbrugge, 1963, 114–122 Assemblée générale de Berkeley=General Assembly of Berkeleyhttp://hydrologie.org/redbooks/a062/iahs_062_0114.pdf
[2] Smirnov M. M., Vyrozhdaiushchiesia giperbolicheskie uravneniia [Degenerate hyperbolic equations], Vysheishaia shkola, Minsk, 1977, 158 pp. (In Russian) | MR
[3] Showalter R.E., Ting T.W., “Pseudoparabolic partial differential equations”, SIAM J. Math. Anal., 1:1 (1970), 1–26 | DOI | MR | Zbl
[4] Chudnovskii A. F., Teplofizika pochv [Thermal Physics of Soils], Nauka, Moscow, 1976, 352 pp. (In Russian)
[5] Nakhushev A. M., “On a class of loaded partial differential equations of fractional order”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 14:1 (2012), 51–57 (In Russian)
[6] Barenblatt G. I., Zheltov Iu. P., Kochina I. N., “Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]”, J. Appl. Math. Mech., 24:5 (1960), 1286–1303 | DOI | Zbl
[7] Coleman B. D., Duffin R. J., Mizel V. J., “IInstability, uniqueness, and nonexistence theorems for the equation $u_t=u_{xx}-u_{xtx}$ on a strip”, Arch. Rat. Mech. Anal., 19:2 (1965), 100–116 | DOI | MR | Zbl
[8] Colton D., “Pseudoparabolic equations in one space variable”, J. Differ. Equations, 12:3 (1972), 559–565 | DOI | MR | Zbl
[9] Yangarber V. A., “The mixed problem for a modified moisture-transfer equation”, J. Appl. Mech. Tech. Phys., 8:1 (1967), 62–64 | DOI
[10] Shkhanukov M. Kh., “Some boundary value problems for a third-order equation that arise in the modeling of the filtration of a fluid in porous media”, Differ. Uravn., 18:4 (1982), 689–699 (In Russian) | MR | Zbl
[11] Vogahova V. A., “A boundary value problem with A. M. Nakhushev's nonlocal condition for a pseudoparabolic equation of moisture transfer”, Differ. Uravn., 18:2 (1982), 280–285 (In Russian) | MR | Zbl
[12] Kozhanov A. I., “On a Nonlocal Boundary Value Problem with Variable Coefficients for the Heat Equation and the Aller Equation”, Differ. Equ., 40:6 (2004), 815–826 | DOI | MR | Zbl
[13] Nakhushev A. M., Uravneniia matematicheskoi biologii [Equations of Mathematical Biology], Vysshaia shkola, Moscow, 1995, 301 pp. (In Russian)
[14] Repin O. A., “An Analog of the Nakhushev Problem for the Bitsadze–Lykov Equation”, Differ. Equ., 38:10 (2002), 1503–1509 | DOI | MR | Zbl
[15] Repin O. A., Kumykova S. K., “A nonlocal problem for the Bitsadze–Lykov equation”, Russian Math. (Iz. VUZ), 54:3 (2010), 24–30 | DOI | MR | Zbl
[16] Nakhushev A. M., Drobnoe ischislenie i ego primenenie [Fractional calculus and its application], Fizmatlit, Moscow, 2003, 272 pp. (In Russian)
[17] Kal'menov T. Sh., “A criterion for the uniqueness of the solution of the Darboux problem for a certain degenerate hyperbolic equation”, Differ. Uravn., 7:1 (1971), 178–181 (In Russian) | MR | Zbl
[18] Kal'menov T. Sh., “The Darboux problem for a certain degenerate equation”, Differ. Uravn., 10:1 (1974), 59–68 (In Russian) | MR | Zbl
[19] Pul'kina L. S., “Certain nonlocal problem for a degenerate hyperbolic equation”, Math. Notes, 51:3 (1992), 286–290 | DOI | MR | Zbl
[20] Repin O. A., Kumykova S. K., “A Boundary-value Problem with Shift for a Hyperbolic Equation Degenerate in the Interior of a Region”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014, no. 1(34), 37–47 (In Russian) | DOI | Zbl
[21] Balkizov Zh. A., “The first boundary value problem for a degenerate hyperbolic equation”, Vladikavkaz. Mat. Zh., 18:2 (2016), 19–30 (In Russian) | MR
[22] Balkizov Zh. A., “The boundary-value problem for a degenerate hyperbolic equation in the area”, Izvestiya Vuzov. Severo-Kavkazskii Region. Natural Science, 2016, no. 1, 5–10 (In Russian) | DOI
[23] Fikhtengol'ts G. M., Kurs differentsial'nogo i integral'nogo ischisleniia [Course of Differential and Integral Calculus], v. 1, Fizmatlit, Moscow, 2003, 680 pp. (In Russian)
[24] Balkizov Zh. A., “Dirichlet boundary value problem for a third order parabolic-hyperbolic equation with degenerating type and order in the hyperbolicity domain”, Ufa Math. Journal, 9:2 (2017), 25–39 | DOI | MR
[25] Makaova R.Kh., “The second boundary-value problem for generalized Hallaire equation with fractional Riemann–Liouville derivative”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 17:3 (2015), 35–38 (In Russian)
[26] Wright E. M., “The generalized Bessel function of order greater than one”, Quart. J. Math. Oxford Ser., os-11:1 (1940), 36–48 | DOI | MR
[27] Pskhu A. V., “Initial-value problem for a linear ordinary differential equation of noninteger order”, Sb. Math., 202:4 (2011), 571–582 | DOI | DOI | MR | Zbl