Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2017_21_4_a2, author = {V. A. Luk'yanov and L. N. Krivonosov}, title = {Yang--Mills equations on conformally connected torsion-free 4-manifolds with different signatures}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {633--650}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2017_21_4_a2/} }
TY - JOUR AU - V. A. Luk'yanov AU - L. N. Krivonosov TI - Yang--Mills equations on conformally connected torsion-free 4-manifolds with different signatures JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2017 SP - 633 EP - 650 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2017_21_4_a2/ LA - ru ID - VSGTU_2017_21_4_a2 ER -
%0 Journal Article %A V. A. Luk'yanov %A L. N. Krivonosov %T Yang--Mills equations on conformally connected torsion-free 4-manifolds with different signatures %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2017 %P 633-650 %V 21 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2017_21_4_a2/ %G ru %F VSGTU_2017_21_4_a2
V. A. Luk'yanov; L. N. Krivonosov. Yang--Mills equations on conformally connected torsion-free 4-manifolds with different signatures. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 4, pp. 633-650. http://geodesic.mathdoc.fr/item/VSGTU_2017_21_4_a2/
[1] Kartan E., Prostranstva affinnoi, proektivnoi i konformnoi sviaznosti [Spaces of affine, projective, and conformal connection], Kazan. un-t, Kazan', 1962, 210 pp. (In Russian) | MR
[2] Krivonosov L. N., Luk'yanov V. A., “Connection of Young-Mills Equations with Einstein and Maxwell's Equations”, J. Sib. Fed. Univ. Math. Phys., 2:4 (2009), 432–448 (In Russian)
[3] Atiyah M. F., Hitchin N. J., Singer I. M., “Self-duality in four-dimensional Riemannian geometry”, Proc. Roy. Soc. London. Series A, 362:1711 (1978), 425–461 | DOI | MR | Zbl
[4] Singerland I. M., Thorpe J. A., “The curvature of 4-dimensional Einstein spaces”, Global Analysis: Papers in Honor of K. Kodaira (PMS-29), Princeton University Press, Princeton, 2015, 355–365 | DOI | MR
[5] Sucheta Koshti, Naresh Dadhich, The General Self-dual solution of the Einstein Equations, 1994, arXiv: gr-qc/9409046
[6] Landau L. D., Lifshits E. M., Teoriia polia [Field theory], Nauka, Moscow, 1973, 504 pp. (In Russian) | MR
[7] Finikov S. P., Metod vneshnikh form Kartana v differentsial'noi geometrii [Method of Cartan's external forms in differential geometry], GITTL, Moscow, 1948, 432 pp. (In Russian) | MR
[8] Krivonosov L. N., Luk'yanov V. A., “Einstein's equations on a $4$-manifold of conformal torsion-free connection”, J. Sib. Fed. Univ. Math. Phys., 5:3 (2012), 393–408 (In Russian)
[9] Korzyjński M., Levandowski J., “The Normal Conformal Cartan Connection and the Bach Tensor”, Class. Quant. Grav., 20:16 (2003), 3745–3764, arXiv: gr-qc/0301096v3 | DOI | MR