Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2017_21_3_a8, author = {A. P. Yankovskii}, title = {Refined model of elastic-plastic behavior of longitudinally}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {524--545}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2017_21_3_a8/} }
TY - JOUR AU - A. P. Yankovskii TI - Refined model of elastic-plastic behavior of longitudinally JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2017 SP - 524 EP - 545 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2017_21_3_a8/ LA - ru ID - VSGTU_2017_21_3_a8 ER -
%0 Journal Article %A A. P. Yankovskii %T Refined model of elastic-plastic behavior of longitudinally %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2017 %P 524-545 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2017_21_3_a8/ %G ru %F VSGTU_2017_21_3_a8
A. P. Yankovskii. Refined model of elastic-plastic behavior of longitudinally. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 3, pp. 524-545. http://geodesic.mathdoc.fr/item/VSGTU_2017_21_3_a8/
[1] Bannister M., “Challenges for composites into the next millennium — a reinforcement perspective”, Composites Part A: Applied Science and Manufacturing, 32:7 (2001), 901–910 | DOI
[2] Pajapakse Y. D. S., Hui D., “Marine Composites: Foreword”, Composites Part B: Engineering, 35:6-8 (2004), 447–450 | DOI
[3] Mouritz A. P., Gellert E., Burchill P., Challis K., “Review of advanced composite structures for naval ships and submarines”, Composite Structures, 53:1 (2001), 21–42 | DOI
[4] Polimernye kompozitsionnye materialy: struktura, svoistva, tekhnologiia [Polymer Composite Materials: Structure, Properties, Technology], ed. A. A. Berlin, Professiia, St. Petersburg, 2009, 560 pp. (In Russian)
[5] Karpov V. V., Modeli i algoritmy issledovaniia prochnosti i ustoichivosti podkreplennykh obolochek vrashcheniia [Research Models and Algorithms of Stability and Reliability of Reinforced Shells] Part 1, Prochnost' i ustoichivost' podkreplennykh obolochek vrashcheniia [Stability and Reliability of Reinforced Rotational Shells]: in 2 Parts, Fizmatlit, Moscow, 2010, 288 pp. (In Russian)
[6] Bazhenov V. A., Krivenko O. P., Solovei N. A., Nelineinoe deformirovanie i ustoichivost' uprugikh obolochek neodnorodnoi struktury: Modeli, metody, algoritmy, maloizuchennye i novye zadachi [Deformation and Buckling of Elastic Shells with Inhomogeneous Structure: Models, Methods, Algorithms, Poorly Studied and New Problems], Librokom Book House, Moscow, 2012, 336 pp. (In Russian)
[7] Nemirovskii Yu. V., Mishchenko A. V., Vokhmianin I. T., Ratsional'noe i optimal'noe proektirovanie sloistykh sterzhnevykh sistem [Rational and Optimal Design of Layered Rod Structures], Novosibirsk State University of Architecture and Civil Engineering Publ., Novosibirsk, 2004, 488 pp. (In Russian)
[8] Roohollah Mousavi S., Reza Esfahani M., “Effective moment of inertia prediction of FRP-reinforced concrete beams based on experimental results”, Journal of Composites for Construction, 16:5 (2012), 490–498 | DOI
[9] Pavłovski D., Szumigaia M., “Theoretical and Numerical Study of the Flexural Behaviour of BFRP RC Beams”, Engineering Transactions, 64:2 (2016), 213–223
[10] Hong S., “Effects of the Amount and Shape of Carbon Fiber-Reinforced Polymer Strengthening Elements on the Ductile Behavior of Reinforced Concrete Beams”, Mechanics of Composite Materials, 50:4 (2014), 427–436 | DOI
[11] Abrosimov N. A., Elesin A. V., “Obosnovanie primenimosti makroneodnorodnykh modelei v zadachakh dinamiki mnogosloinykh kompozitnykh balok [Substantiation of applicability of macronon-uniform models in problems of dynamics multilayered ccomposites beams]”, Prikladnye problemy prochnosti i plastichnosti [Applied problems of strength and plasticity], Gorky Univ. Publ., Gorky, 1987, 69–74 (In Russian)
[12] Abrosimov N. A., Bazhenov V. G., Nelineinye zadachi dinamiki kompozitnykh konstruktsii [Nonlinear Problems of Dynamics of Composite Structures], Nizhegorod. Univ. Publ., N. Novgorod, 2002, 400 pp. (In Russian)
[13] Yankovskii A. P., “Modelling of the elastoplastic dynamics of longitudinally reinforced wall beams based on a time-explicit central difference method”, J. Appl. Math. Mech., 81:1 (2017), 36–51 | DOI | MR
[14] Romanova T. P., Yankovskii A. P., “Comparative analysis of models of bending deformation of reinforced walls-beams of nonlinear elastic materials”, Problemy prochnosti i plastichnosti, 76:4 (2014), 297–309 (In Russian)
[15] Nemirovskii Yu. V., Yankovskii A. P., “Integration of problem on elasto-plastic dynamic bending of reinforced cores of sections with a variable cross-section using generalized Runge–Kutta methods”, Vychislitel'nye tekhnologii, 9:4 (2004), 77–95 (In Russian)
[16] Yankovskii A. P., “Analyzing the elastic-plastic deformation of reinforced wall-beams, accounting for the weakened resistance to in-plane shear”, Problemy prochnosti i plastichnosti, 74 (2012), 92–103 (In Russian)
[17] Zubchaninov V. G., Osnovy teorii uprugosti i plastichnosti [Bases of the theory of elasticity and plasticity], Vyssh. shkola, Moscow, 1990, 368 pp. (In Russian)
[18] Ambartsumian S. A., Obshchaia teoriia anizotropnykh obolochek [The general theory of anisotropic shells], Nauka, Moscow, 1974, 446 pp. (In Russian) | MR
[19] Houlston R., DesRochers C. G., “Nonlinear structural response of ship panels subjected to air blast loading”, Computers Structures, 26:1–2 (1987), 1–15 | DOI
[20] Dinamicheskii raschet sooruzhenii na spetsial'nye vozdeistviia [Dynamic calculation of structures for special effects], ed. B. G. Korenev, I. M. Rabinovich, Stroiizdat, Moscow, 1981, 215 pp. (In Russian)
[21] Librescu L., Oh S.-Y., Hohe J., “Linear and non-linear dynamic response of sandwich panels to blast loading”, Composites Part B: Engineering, 35:6–8 (2004), 673–683 | DOI
[22] Richtmyer R. D., Morton K. W., Difference methods for initial-value problems, Interscience Publ., New York, 1967, xiv+405 pp. | MR | Zbl
[23] Samarskii A. A., Teoriia raznostnykh skhem [The theory of finite difference schemes], Nauka, Moscow, 1989, 616 pp. (In Russian) | MR
[24] Malinin N. N., Prikladnaia teoriia plastichnosti i polzuchesti [The applied theory of plasticity and creep], Mashinostroenie, Moscow, 1968, 400 pp. (In Russian)
[25] Kompozitsionnye materialy [Composite Materials], ed. D. M. Karpinos, Nauk. dumka, Kiev, 1985, 592 pp. (In Russian) | MR
[26] Lubin G., Handbook of composites, Springer US, New York, 1982, xi+786 pp. | DOI