Solution of the boundary-value problem of torsion for solid and hollow cylindrical specimens
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 3, pp. 507-523.

Voir la notice de l'article provenant de la source Math-Net.Ru

We have developed a method for solving the boundary-value problem of torsion for solid and hollow cylindrical specimens under steady-state creep conditions. The definition of rheological model is carried out with experimental stationary creep curves under uniaxial tension in accordance with the modified method of least squares. Comparison of calculated characteristics of the stress-state with corresponding test data was made for short-time creep of cylindrical specimens made of the Steel 45 or AMG-6M alloy. The dependencies for strain intensity at the characteristic point and torsion angle on time are obtained and compared with the data calculated by the method of characteristic point. The estimates of errors of deviation of calculated data from experimental values are given and there is good-enough correspondence between the experimental and calculated data. The calculated diagrams for shear stress along the radius at different time points are obtained during torsion for both solid and hollow cylinders.
Keywords: boundary-value problem, cylindrical specimen, steady-state creep, numerical method.
Mots-clés : tension, torsion
@article{VSGTU_2017_21_3_a7,
     author = {V. V. Tsvetkov},
     title = {Solution of the boundary-value problem of torsion for solid and hollow cylindrical specimens},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {507--523},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2017_21_3_a7/}
}
TY  - JOUR
AU  - V. V. Tsvetkov
TI  - Solution of the boundary-value problem of torsion for solid and hollow cylindrical specimens
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2017
SP  - 507
EP  - 523
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2017_21_3_a7/
LA  - ru
ID  - VSGTU_2017_21_3_a7
ER  - 
%0 Journal Article
%A V. V. Tsvetkov
%T Solution of the boundary-value problem of torsion for solid and hollow cylindrical specimens
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2017
%P 507-523
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2017_21_3_a7/
%G ru
%F VSGTU_2017_21_3_a7
V. V. Tsvetkov. Solution of the boundary-value problem of torsion for solid and hollow cylindrical specimens. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 3, pp. 507-523. http://geodesic.mathdoc.fr/item/VSGTU_2017_21_3_a7/

[1] Lokoshchenko A. M., Platonov D. O., “Long-term strength of nickel alloy EI437BU-WD at the complex stress state”, Mashinostroenie i ingenernoe obrazovanie, 2010, no. 2, 15–24 (In Russian)

[2] Radchenko V. P., Bashkinova E. V., Kubyshkina S. N., “On one approach to estimate of long-term strength for thick-walled pipe based on integral-average stress states”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2002, no. 16, 96–104 (In Russian) | DOI

[3] Johnson A. E., “Complex-stress creep of metals”, Metallurgical Reviews, 5:1 (1960), 447–506 | DOI

[4] Huddleston R. L., “An improved multiaxial creep-rupture strength criterion”, J. Pressure Vessel Technol., 107:4 (1985), 421–429 | DOI

[5] Hayhurst D. R., “Creep rupture under multi-axial states of stress”, J. Mech. Phys. Solids, 20:6 (1972), 381–390 | DOI

[6] Greenwood G. W., “Grain shape effects on interface-controlled diffusional creep under multiaxial stresses”, Acta Met. Et. Mater., 43:5 (1995), 1811–1816 | DOI

[7] Lokoshchenko A. M., Polzuchest' i dlitel'naia prochnost' metallov [Creep and long-term strength of metals], Fizmatlit, Moscow, 2016, 504 pp. (In Russian)

[8] Radchenko V. P., Eremin Yu. A., Reologicheskoe deformirovanie i razrushenie materialov i elementov konstruktsiy [Rheological Deformation and Fracture of Materials and Structural Elements], Mashinostroenie-1, Moscow, 2004, 264 pp. (In Russian)

[9] Radchenko V. P., Kubyshkina S. N., “A mathematical model of rheological deformation and fracture for thick-walled pipe”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1998, no. 6, 23–34 (In Russian) | DOI

[10] Gorev B. V., “On the estimation of creep and long-term strength of structural elements using the method of characteristic parameters. Message 1”, Probl. prochnosti [Strength of Materials], 1979, no. 4, 30–36 (In Russian)

[11] Banshchikova I. A., Gorev B. V., Sukhorukov I. V., “Two-dimensional problems of beam forming under conditions of creep”, J. Appl. Mech. Tech. Phys., 43:3 (2002), 448–456 | DOI | Zbl

[12] Gorev B. V., Nikitenko A. F., Energeticheskiy variant teorii polzuchesti [Energy variant of the theory of creep], Inst. of Hydrodynamics, USSR Acad. of Sci., Novosibirsk, 1986, 96 pp. (In Russian)

[13] Radchenko V. P., Tsvetkov V. V., “The stress-strain state of cylindrical sample from alloy D16T under axial tension and torsion creep”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2013, no. 3(32), 77–86 (In Russian) | DOI | Zbl

[14] Larichkin A. Yu., Gorev B. V., “The constructing shear strains from the pure torsion of round solid samples”, St. Petersburg Polytechnical University Journal: Physics and Mathematics, 2013, no. 3 (177), 212–219 (In Russian)

[15] Lvovsky E. N., Statisticheskie metody postroeniia empiricheskikh formul [Statistical methods for constructing empirical formulas], Vyssh. shk., Moscow, 1988, 239 pp. (In Russian)

[16] Zoteev V. E., Parametricheskaia identifikatsiia dissipativnykh mekhanicheskikh sistem na osnove raznostnykh uravnenii [Parametric Identification of Dissipative Mechanical Systems Based on Difference Equations], Mashinostroenie, Moscow, 2009, 344 pp. (In Russian)

[17] Zoteev V. E., Makarov R. Yu., “Numerical method of estimation of parameters of deformation of creep in the exponential dependency of parametr of weakening from the strain”, Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie, 2016, no. 3 (51), 18–25 (In Russian)