Integro-differential equations the second boundary value problem of linear elasticity theory.
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 3, pp. 496-506.

Voir la notice de l'article provenant de la source Math-Net.Ru

The system of equations of the second boundary value problem of the linear theory of elasticity for homogeneous isotropic bodies is reduced to two separate integro-differential equations of Fredholm type, which allowed to apply for their research the theorem of Fredholm. The spectral radii of the corresponding operators are determined and the existence and uniqueness of the solution of the second boundary value problem are proved. It is also established that the decision of the second integro-differential equation can be found by successive approximations and presented convergent with a geometric rate close to Neumann. The method application is illustrated on the example of calculation of residual stresses in a quenched cylinder.
Keywords: second boundary-value problem, homogeneous isotropic body, integro-differential equation, spectral radius, successive approximation.
@article{VSGTU_2017_21_3_a6,
     author = {V. V. Struzhanov},
     title = {Integro-differential equations the second boundary value problem of linear elasticity theory.},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {496--506},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2017_21_3_a6/}
}
TY  - JOUR
AU  - V. V. Struzhanov
TI  - Integro-differential equations the second boundary value problem of linear elasticity theory.
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2017
SP  - 496
EP  - 506
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2017_21_3_a6/
LA  - ru
ID  - VSGTU_2017_21_3_a6
ER  - 
%0 Journal Article
%A V. V. Struzhanov
%T Integro-differential equations the second boundary value problem of linear elasticity theory.
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2017
%P 496-506
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2017_21_3_a6/
%G ru
%F VSGTU_2017_21_3_a6
V. V. Struzhanov. Integro-differential equations the second boundary value problem of linear elasticity theory.. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 3, pp. 496-506. http://geodesic.mathdoc.fr/item/VSGTU_2017_21_3_a6/

[1] Lurie A. I., Theory of Elasticity, Foundations of Engineering Mechanics, Springer, Berlin, Heidelberg, 2005, 1050 pp. | DOI | MR | MR

[2] Eliseev V. V., Mekhanika uprugikh tel [Mechanics of Elastic Bodies], SPbGPU, Saint-Petersburg, 2002, 341 pp. (In Russian)

[3] Dimitrienko Yu. I., Tenzornoe ischislenie [Tensor Calculus], Vyssh. shk., Moscow, 2001, 575 pp. (In Russian)

[4] Timoshenko S. P., Goodier J. N., Theory of elasticity, Engineering Societies Monographs. International Student Edition, McGraw-Hill Book Comp., New York, 1970, xxiv+567 pp. | MR | Zbl

[5] Vladimirov V. S., Uravneniia matematicheskoi fiziki [Equations of mathematical physics], Nauka, Moscow, 1971, 512 pp. (In Russian) | MR

[6] Hahn H. G., Elastizitätstheorie. Grundlagen der linearen Theorie und Anwendungen auf eindimensionale, ebene und räumliche Probleme, Leitfäden der Angewandten Mathematik und Mechanik, 62, B. G. Teubner, Stuttgart, 1985, 332 pp. | MR | Zbl

[7] Ladyzhenskaia O. A., Ural'tseva N. N., Lineinye i kvazilineinye uravneniia ellipticheskogo tipa [Linear and quasilinear equations of elliptic type], Nauka, Moscow, 1973, 576 pp. (In Russian) | MR

[8] Sobolev S. L., Nekotorye primeneniia funktsional'nogo analiza v matematicheskoi fizike [Some applications of functional analysis in mathematical physics], Nauka, Moscow, 1988, 334 pp. (In Russian) | MR

[9] Koshlyakov N. S., Gliner E. B., Smirnov M. M., Uravneniia v chastnykh proizvodnykh matematicheskoi fiziki [Equations in partial derivatives of mathematical physics], Vyssh. shk., Moscow, 1970, 712 pp. (In Russian) | MR | Zbl

[10] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike [Variational Methods in Mathematical Physics], Nauka, Moscow, 1970, 512 pp. (In Russian) | MR

[11] Trenogin V. A., Funktsional'nyi analiz [Functional analysis], Nauka, Moscow, 1980, 496 pp. (In Russian) | MR

[12] Functional analysis, Wolters-Noordhoff Series of Monographs and Textbooks on Pure and Applied Mathematics, ed. S. G. Krejn, Wolters-Noordhoff Publ., Groningen, Netherlands, 1972, xv+379 pp. | Zbl

[13] Lyusternik L. A., Sobolev V. I., Elementy funktsional'nogo analiza [Elements of Functional Analysis], Nauka, Moscow, 1965, 520 pp. (In Russian) | MR

[14] Kantorovich L. V., Akilov G. P., Funktsional'nyi analiz [Functional Analysis], Nauka, Moscow, 1977, 741 pp. (In Russian) | MR

[15] Korenev G. V., Tenzornoe ischislenie [Tensor Calculus], Mosk. Fiz.-Tekhn. Inst., Moscow, 2000, 240 pp. (In Russian)

[16] Krasnosel'sky M. A., Vainikko G. M., Zabreiko P. P., Rutitsky Ya. B., Stetsenko V. Ya., Priblizhennoe reshenie operatornykh uravnenii [Approximate Solution of Operator Equations], Nauka, Moscow, 1969, 455 pp. (In Russian) | MR

[17] Yuriev S. F., Udel'nye ob"emy faz v martensitnom prevrashchenii austenita [Specific Volumes of Phases in Martensite Transformation of Austenite], Metallurgizdat, Moscow, 1950, 48 pp. (In Russian)

[18] Tikhonov A. N., Samarskii A. A., Equations of mathematical physics, A Pergamon Press Book The Macmillan Co., New York, 1963, xvi+765 pp. | MR | MR | Zbl