Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2017_21_3_a11, author = {M. N. Nazarov}, title = {Mathematical modelling of tissue formation on the basis of ordinary differential equations}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {581--594}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2017_21_3_a11/} }
TY - JOUR AU - M. N. Nazarov TI - Mathematical modelling of tissue formation on the basis of ordinary differential equations JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2017 SP - 581 EP - 594 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2017_21_3_a11/ LA - ru ID - VSGTU_2017_21_3_a11 ER -
%0 Journal Article %A M. N. Nazarov %T Mathematical modelling of tissue formation on the basis of ordinary differential equations %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2017 %P 581-594 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2017_21_3_a11/ %G ru %F VSGTU_2017_21_3_a11
M. N. Nazarov. Mathematical modelling of tissue formation on the basis of ordinary differential equations. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 3, pp. 581-594. http://geodesic.mathdoc.fr/item/VSGTU_2017_21_3_a11/
[1] Urdy S., “Principles of morphogenesis: the contribution of cellular automata models (Book Review)”, Acta Zoologica, 90:2 (2009), 205–208 | DOI
[2] Palsson E., “A three-dimensional model of cell movement in multicellular systems”, Future Generation Computer Systems, 17:7 (2001), 835–852 | DOI | Zbl
[3] Drasdo D., Höhme S., “A single-cell-based model of tumor growth in vitro: monolayers and spheroids”, Physical Biology, 2:3 (2005), 133–147 | DOI
[4] Drasdo D., “Center-based Single-cell Models: An Approach to Multi-cellular Organization Based on a Conceptual Analogy to Colloidal Particles”, Single-Cell-Based Models in Biology and Medicine, Mathematics and Biosciences in Interaction, Birkhäuser, Basel, 2007, 171–196 | DOI
[5] Bauer A. L., Jackson T. L., Jiang Y., “A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis”, Biophysical Journal, 92:9 (2007), 3105–3121 | DOI
[6] Hirashima T., Iwasa Y., Morishita Y., “Dynamic modeling of branching morphogenesis of ureteric bud in early kidney development”, Journal of Theoretical Biology, 259:1 (2009), 58–66 | DOI
[7] Szabó A., Czirók A., “The Role of Cell-Cell Adhesion in the Formation of Multicellular Sprouts”, Math. Model. Nat. Phenom., 5:1 (2010), 106–122 | DOI | MR | Zbl
[8] Taber L. A., “Towards a unified theory for morphomechanics”, Philos. Trans. Ser. A, 367:1902 (2009), 3555–3583 | DOI | MR | Zbl
[9] Wyczalkowski M. A., Chen Z., Filas B. A., Varner V. D., Taber L. A., “Computational models for mechanics of morphogenesis”, Birth Defects Res. C, 96:2 (2012), 132–152 | DOI
[10] Forgacs G., Foty R. A., Shafrir Y., Steinberg M. S., “Viscoelastic properties of living embryonic tissues: a quantitative study”, Biophysical Journal, 74:5 (1998), 2227–2234 | DOI
[11] Ranft J., Basan M., Elgeti J., Joanny J.-F., Prost J., Jülicher F., “Fluidization of tissues by cell division and apoptosis”, Proc. Natl. Acad. Sci. USA, 107:49 (2010), 20863–20868 | DOI
[12] Dillon R., Othmer H. G., “A Mathematical Model for Outgrowth and Spatial Patterning of the Vertebrate Limb Bud”, Journal of Theoretical Biology, 197:3 (1999), 295–330 | DOI
[13] Keller E. F., Segel L. A., “Initiation of slime mold aggregation viewed as an instability”, Journal of Theoretical Biology, 26:3 (1970), 399–415 | DOI | Zbl
[14] Tanaka S., “Simulation Frameworks for Morphogenetic Problems”, Computation, 3:2 (2015), 197–221 | DOI
[15] Brauer F., Castillo-Chavez C., Mathematical Models in Population Biology and Epidemiology, Texts in Applied Mathematics, 40, Springer Verlag, New York, 2012, xxiv+508 pp. | DOI | MR
[16] Nazarov M. N., “Modelling the tissue growth with the possibility of external influence on tissue shape”, Prikl. Diskr. Mat., 2013, no. 4(22), 103–113 (In Russian)
[17] Nazarov M. N., “The basic mathematical model for the description of regulatory processes of protein biosynthesis”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:4 (2016), 515–524 (In Russian) | DOI | MR
[18] Finch-Edmondson M., Sudol M., “Framework to function: mechanosensitive regulators of gene transcription”, Cellular and Molecular Biology Letters, 21 (2016), 28, 23 pp. | DOI