On the method of orthogonal projections in the theory of elasticity
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 2, pp. 308-325.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of orthogonal projections applied to the task of determining the stresses in the elastic deformable bodies, which allowed us to relax the requirements to the smoothness of the functions defining external forces and to the components of the tensor of the initial strains, which cause the appearance of balanced self-stresses. Examples of the calculation of quench stresses in a circular cylinder and residual stresses after shrinkage of the binder in composite cylinders made by winding are given.
Keywords: energy Hilbert subspaces, orthonormal system, orthoprojector, residual stresses.
Mots-clés : orthogonal spaces
@article{VSGTU_2017_21_2_a7,
     author = {V. V. Struzhanov},
     title = {On the method of orthogonal projections in the theory of elasticity},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {308--325},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a7/}
}
TY  - JOUR
AU  - V. V. Struzhanov
TI  - On the method of orthogonal projections in the theory of elasticity
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2017
SP  - 308
EP  - 325
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a7/
LA  - ru
ID  - VSGTU_2017_21_2_a7
ER  - 
%0 Journal Article
%A V. V. Struzhanov
%T On the method of orthogonal projections in the theory of elasticity
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2017
%P 308-325
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a7/
%G ru
%F VSGTU_2017_21_2_a7
V. V. Struzhanov. On the method of orthogonal projections in the theory of elasticity. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 2, pp. 308-325. http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a7/

[1] Kantorovich L. V., Akilov G. P., Funktsional'nyi analiz [Functional Analysis], Nauka, Moscow, 1977, 741 pp. (In Russian) | MR

[2] Lyusternik L. A., Sobolev V. I., Elementy funktsional'nogo analiza [Elements of Functional Analysis], Nauka, Moscow, 1965, 520 pp. (In Russian) | MR

[3] Balakrishnan A. V., Applied functional analysis, Applications of Mathematics, 3, Springer-Verlag, New York, Heidelberg, Berlin, 1976, x+309 pp. | MR | Zbl

[4] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsional'nogo analiza [Elements of the Theory of Functions and Functional Analysis], Nauka, Moscow, 1989, 624 pp. (In Russian) | MR

[5] Krasnosel'sky M. A., Vainikko G. M., Zabreiko P. P., Rutitsky Ya. B., Stetsenko V. Ya., Priblizhennoe reshenie operatornykh uravnenii [Approximate Solution of Operator Equations], Nauka, Moscow, 1969, 455 pp. (In Russian) | MR | Zbl

[6] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike [Variational Methods in Mathematical Physics], Nauka, Moscow, 1970, 512 pp. (In Russian) | MR | Zbl

[7] Rektorys K., Variational methods in mathematics, science and engineering, D. Reidel Publ., Dordrecht, Boston, London, 1980, 571 pp. | MR | Zbl

[8] Parton V. Z., Perlin P. I., Metody matematicheskoi teorii uprugosti [Methods of the Mathematical Theory of Elasticity], Nauka, Moscow, 1981, 688 pp. (In Russian) | MR

[9] Abovsky N. P., Andreev N. P., Deruga A. P., Variatsionnye printsipy teorii uprugosti i teorii obolochek [Variational Principles of Elasticity and Shell Theory], Nauka, Moscow, 1978, 288 pp. (In Russian) | MR

[10] Birger I. A., Ostatochnye napriazheniia [Residual Stresses], Mashgiz, Moscow, 1963, 262 pp. (In Russian)

[11] Pavlov V. F., Kirpichev V. A, Ivanov V. B., Ostatochnye napriazheniia i soprotivlenie ustalosti uprochnennykh detalei s kontsentratorami napriazhenii [Residual Stresses and Fatigue Resistance of Hardened Parts with Stress Concentrators], Samara Research Center, Samara, 2008, 64 pp. (In Russian)

[12] Berstein G., Fuchsbauer B., “Festwalzen und Schwingfestigkeit”, Materialwissenschaft und Werkstofftechnik, 13:3 (1982), 103–109 | DOI | MR

[13] Saushkin M. N., Radchenko V. P., Pavlov V. F., “Method of calculating the fields of residual stresses and plastic strains in cylindrical specimens with allowance for surface hardening anisotropy”, J. Appl. Mech. Tech. Phys., 52:2 (2011), 303–310 | DOI | Zbl

[14] Pozdeev A. A., Niashin Yu. I., Trusov P. V., Ostatochnye napriazheniia: teoriia i prilozheniia [Residual Stresses. Theory and Applications], Nauka, Moscow, 1982, 111 pp. (In Russian)

[15] Struzhanov V. V., “Determination of shrinkage stresses in components of stochastically reinforced composites”, Soviet Applied Mechanics, 18:5 (1982), 445–449 | DOI | Zbl

[16] Timoshenko S. P., Goodier J. N., Theory of elasticity, Engineering Societies Monographs. International Student Edition, McGraw-Hill Book Comp., New York, 1970, xxiv+567 pp. | MR | Zbl

[17] Lurie A. I., Theory of Elasticity, Foundations of Engineering Mechanics, Springer, Berlin, Heidelberg, 2005, 1050 pp. | DOI | MR