Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2017_21_2_a6, author = {A. V. Kovalev and I. E. Sviridov and Yu. D. Scheglova}, title = {Application of the perturbation method for the determination of stress-strain state of a thick-style two-layer anisotropic shaft of non-circular cross section with elastoplastic torsion}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {292--307}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a6/} }
TY - JOUR AU - A. V. Kovalev AU - I. E. Sviridov AU - Yu. D. Scheglova TI - Application of the perturbation method for the determination of stress-strain state of a thick-style two-layer anisotropic shaft of non-circular cross section with elastoplastic torsion JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2017 SP - 292 EP - 307 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a6/ LA - ru ID - VSGTU_2017_21_2_a6 ER -
%0 Journal Article %A A. V. Kovalev %A I. E. Sviridov %A Yu. D. Scheglova %T Application of the perturbation method for the determination of stress-strain state of a thick-style two-layer anisotropic shaft of non-circular cross section with elastoplastic torsion %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2017 %P 292-307 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a6/ %G ru %F VSGTU_2017_21_2_a6
A. V. Kovalev; I. E. Sviridov; Yu. D. Scheglova. Application of the perturbation method for the determination of stress-strain state of a thick-style two-layer anisotropic shaft of non-circular cross section with elastoplastic torsion. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 2, pp. 292-307. http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a6/
[1] Fominykh S. O., “Elastoplastic state of a thick-walled pipe at the interaction of different types of plastic anisotropy”, Vestnik Chuvash. gos. ped. un-ta im. I. Ia. Iakovleva. Ser. Mekhanika predel'nogo sostoianiia, 2011, no. 1(9), 211–226 (In Russian)
[2] Zadorozhnyi V. G., Kovalev A. V., Sporykhin A. N., “Analyticity of the solution of a plane elastoplastic problem”, Mechanics of Solids, 43:1 (2008), 117–123 | DOI
[3] Ivlev D. D., Mironov B. G., “On the relations of translational ideal-plastic anisotropy in torsion”, Vestnik Chuvash. gos. ped. un-ta im. I. Ia. Iakovleva. Ser. Mekhanika predel'nogo sostoianiia, 2010, no. 2(8), 576–579 (In Russian)
[4] Mironov B. G., Mitrofanova T. V., “On the torsion of anisotropic cylindrical rods”, Vestnik Chuvash. gos. ped. un-ta im. I. Ia. Iakovleva. Ser. Mekhanika predel'nogo sostoianiia, 2011, no. 1(9), 150–155 (In Russian)
[5] Kovalev A. V., Sviridov I. E., Shcheglova Yu. D., “On the determination of the stressed state of a two-layer anisotropic circular cylinder under elastoplastic torsion”, XI Vserossiiskii S"ezd po fundamental'nym problemam teoreticheskoi i prikladnoi mekhaniki [XI All-Russian Congress on Fundamental Problems of Theoretical and Applied Mechanics], Kazan', 2015, 3379–3381 (In Russian)
[6] Kovalev A. V., Shcheglova Yu. D., Sviridov I. E., “Elastoplastic torsion of thick-walled non-circular cross-section shaft in case of general form anisotropy”, Vestnik Chuvash. gos. ped. un-ta im. I. Ia. Iakovleva. Ser. Mekhanika predel'nogo sostoianiia, 2016, no. 4(30), 42–54 (In Russian)
[7] Ivlev D. D., Ershov L. V., Metod vozmuschenii v teorii uprugoplasticheskogo tela, Nauka, M., 1978, 208 pp.
[8] Ivlev D. D., Ershov L. V., Metod vozmushchenii v teorii uprugoplasticheskogo tela [Perturbation Method in the Theory of Elastoplastic Body], Nauka, Moscow, 1978, 208 pp. (In Russian)
[9] Hill R., The Mathematical theory of plasticity, Oxford Classic Texts in the Physical Sciences, Oxford University Press, Oxford, 1998, ix+355 pp. | MR | Zbl
[10] Ivlev D. D., Maksimova L. A., “On the relations of the theory of translational ideal-anisotropy under generalization of the Mises plasticity condition”, Vestnik Chuvash. gos. ped. un-ta im. I. Ia. Iakovleva. Ser. Mekhanika predel'nogo sostoianiia, 2010, no. 2(8), 583–584 (In Russian) | MR
[11] Kachanov L. M., Osnovy teorii plastichnosti [Fundamentals of the Theory of Plasticity], Nauka, Moscow, 1969, 420 pp. (In Russian)
[12] Fominykh S. O., “Determination of elastic-plastic state in a thick-walled tube, provided translational ideal-anisotropy”, Vestnik Chuvash. gos. ped. un-ta im. I. Ia. Iakovleva. Ser. Mekhanika predel'nogo sostoianiia, 2013, no. 2(16), 150–153 (In Russian)
[13] Kovalev A. V., Sviridov I. E., Shcheglova Yu. D., “On the determination of displacements in the problem of elastoplastic torsion of a circular cylinder in the case of translational anisotropy”, Mekhanika predel'nogo sostoianiia i smezhnye voprosy [Critical State Mechanics and Related Topics], Cheboksary, 2015, 113–117 (In Russian)